OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 18 — Sep. 9, 2013
  • pp: 21651–21668

Switching using PT symmetry in plasmonic systems: positive role of the losses

Anatole Lupu, Henri Benisty, and Aloyse Degiron  »View Author Affiliations

Optics Express, Vol. 21, Issue 18, pp. 21651-21668 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (2074 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We analyze the operation of 2 × 2 switches composed of two coupled waveguides operating on the basis of parity-time (PT) symmetry: the two waveguides differ through their gain or loss factors and not through the real part of their propagation constant. Plasmonics constitutes a preferred application for such systems, since combination of plasmonics with gain is increasingly mastered. The exact PT-symmetric case (gain and loss of identical absolute value) is considered as well as various unbalanced cases, thanks to their respective switching diagrams. Although perfect signal-conserving cross and bar states are not always possible in the latter cases, they can nevertheless form the basis of very good switches if precise design rules are followed. We draw from the analysis what the optimal configurations are in terms of, e.g., guide gain or gain-length product to operate the switch. Many analytical or semi-analytical results are pointed out. A practical example based on the coupling of a long-range surface-plasmon-polariton and a polymeric waveguide having gain is provided.

© 2013 OSA

OCIS Codes
(250.5300) Optoelectronics : Photonic integrated circuits
(130.4815) Integrated optics : Optical switching devices
(250.5403) Optoelectronics : Plasmonics
(080.6755) Geometric optics : Systems with special symmetry

ToC Category:
Integrated Optics

Original Manuscript: July 11, 2013
Revised Manuscript: August 22, 2013
Manuscript Accepted: August 26, 2013
Published: September 6, 2013

Anatole Lupu, Henri Benisty, and Aloyse Degiron, "Switching using PT symmetry in plasmonic systems: positive role of the losses," Opt. Express 21, 21651-21668 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. M.  Bender, S.  Boettcher, “Real spectra in non-Hermitian Hamiltonians having PT symmetry,” Phys. Rev. Lett. 80(24), 5243–5246 (1998). [CrossRef]
  2. C. M.  Bender, “Making Sense of non-Hermitian Hamiltonians,” Rep. Prog. Phys. 70(6), 947–1018 (2007). [CrossRef]
  3. A.  Ruschhaupt, F.  Delgado, J. G.  Muga, “Physical realization of PT -symmetric potential scattering in a planar slab waveguide,” J. Phys. A 38(9), L171–L176 (2005). [CrossRef]
  4. M.  Greenberg, M.  Orenstein, “Irreversible coupling by use of dissipative optics,” Opt. Lett. 29(5), 451–453 (2004). [CrossRef] [PubMed]
  5. M.  Kulishov, J. M.  Laniel, N.  Bélanger, J.  Azaña, D. V.  Plant, “Nonreciprocal waveguide Bragg gratings,” Opt. Express 13(8), 3068–3078 (2005). [CrossRef] [PubMed]
  6. M.  Kulishov, J. M.  Laniel, N.  Bélanger, D. V.  Plant, “Trapping light in a ring resonator using a grating-assisted coupler with asymmetric transmission,” Opt. Express 13(9), 3567–3578 (2005). [CrossRef] [PubMed]
  7. C. M.  Bender, D. C.  Brody, H. F.  Jones, B. K.  Meister, “Faster than Hermitian Quantum Mechanics,” Phys. Rev. Lett. 98(4), 040403 (2007). [CrossRef] [PubMed]
  8. R.  El-Ganainy, K. G.  Makris, D. N.  Christodoulides, Z. H.  Musslimani, “Theory of coupled optical PT-symmetric structures,” Opt. Lett. 32(17), 2632–2634 (2007). [CrossRef] [PubMed]
  9. S.  Klaiman, U.  Günther, N.  Moiseyev, “Visualization of branch points in PT-symmetric waveguides,” Phys. Rev. Lett. 101(8), 080402 (2008). [CrossRef] [PubMed]
  10. K. G.  Makris, R.  El-Ganainy, D. N.  Christodoulides, Z. H.  Musslimani, “Beam dynamics in PT symmetric optical lattices,” Phys. Rev. Lett. 100(10), 103904 (2008). [CrossRef] [PubMed]
  11. A.  Guo, G. J.  Salamo, M.  Volatier-Ravat, V.  Aimez, G. A.  Siviloglou, D. N.  Christodoulides, “Observation of PT-symmetry breaking in complex optical potentials,” Phys. Rev. Lett. 103(9), 093902 (2009). [CrossRef] [PubMed]
  12. O.  Bendix, R.  Fleischmann, T.  Kottos, B.  Shapiro, “Exponentially fragile PT symmetry in lattices with localized eigenmodes,” Phys. Rev. Lett. 103(3), 030402 (2009). [CrossRef] [PubMed]
  13. T.  Kottos, “Broken symmetry makes light work,” Nat. Phys. 6(3), 166–167 (2010). [CrossRef]
  14. C. E.  Rüter, K. G.  Makris, R.  El-Ganainy, D. N.  Christodoulides, M.  Segev, D.  Kip, “Observation of parity–time symmetry in optics,” Nat. Phys. 6(3), 192–195 (2010). [CrossRef]
  15. M. C.  Zheng, D. N.  Christodoulides, R.  Fleischmann, T.  Kottos, “PT optical lattices and universality in beam dynamics,” Phys. Rev. A 82(1), 010103 (2010). [CrossRef]
  16. J.  Čtyroký, V.  Kuzmiak, S.  Eyderman, “Waveguide structures with antisymmetric gain/loss profile,” Opt. Express 18(21), 21585–21593 (2010). [CrossRef] [PubMed]
  17. S.  Longhi, “Invisibility in PT -symmetric complex crystals,” J. Phys. A: Math. Theor. 44(48), 485302 (2011). [CrossRef]
  18. A. E.  Miroshnichenko, B. A.  Malomed, Yu. S.  Kivshar, “Nonlinearly-PT -symmetric systems: spontaneous symmetry breaking and transmission resonances,” Phys. Rev. A 84(1), 012123 (2011). [CrossRef]
  19. Y. D.  Chong, L.  Ge, A. D.  Stone, “PT-symmetry breaking and laser-absorber modes in optical scattering systems,” Phys. Rev. Lett. 106(9), 093902 (2011). [CrossRef] [PubMed]
  20. M.-A.  Miri, A.  Regensburger, U.  Peschel, D. N.  Christodoulides, “Optical mesh lattices with PT –symmetry,” Phys. Rev. A 86(2), 023807 (2012). [CrossRef]
  21. H.  Ramezani, T.  Kottos, V.  Kovanis, D. N.  Christodoulides, “Exceptional-point dynamics in photonic honeycomb lattices with PT symmetry,” Phys. Rev. A 85(1), 013818 (2012). [CrossRef]
  22. S.  Longhi, G.  Della Valle, “Photonic realization of PT-symmetric quantum field theories,” Phys. Rev. A 85(1), 012112 (2012). [CrossRef]
  23. V. V.  Konotop, V. S.  Shchesnovich, D. A.  Zezyulin, “Giant amplification of modes in parity-time symmetric waveguides,” Phys. Lett. A 376(42-43), 2750–2753 (2012). [CrossRef]
  24. D. A.  Zezyulin, V. V.  Konotop, “Nonlinear Modes in finite-dimensional PT-symmetric systems,” Phys. Rev. Lett. 108(21), 213906 (2012). [CrossRef] [PubMed]
  25. A. A.  Sukhorukov, S. V.  Dmitriev, S. V.  Suchkov, Y. S.  Kivshar, “Nonlocality in PT-symmetric waveguide arrays with gain and loss,” Opt. Lett. 37(11), 2148–2150 (2012). [CrossRef] [PubMed]
  26. H.  Ramezani, J.  Schindler, F. M.  Ellis, U.  Günther, T.  Kottos, “Bypassing the bandwidth theorem with PT symmetry,” Phys. Rev. A 85(6), 062122 (2012). [CrossRef]
  27. M.  Kulishov, B.  Kress, “Free space diffraction on active gratings with balanced phase and gain/loss modulations,” Opt. Express 20(28), 29319–29328 (2012). [CrossRef] [PubMed]
  28. L.  Feng, Y. L.  Xu, W. S.  Fegadolli, M. H.  Lu, J. E.  Oliveira, V. R.  Almeida, Y. F.  Chen, A.  Scherer, “Experimental demonstration of a unidirectional reflectionless parity-time metamaterial at optical frequencies,” Nat. Mater. 12(2), 108–113 (2012). [CrossRef] [PubMed]
  29. I. V.  Barashenkov, L.  Baker, N. V.  Alexeeva, “PT-symmetry breaking in a necklace of coupled optical waveguides,” Phys. Rev. A 87(3), 033819 (2013). [CrossRef]
  30. C.  Hang, G.  Huang, V. V.  Konotop, “PT Symmetry with a system of three-level atoms,” Phys. Rev. Lett. 110(8), 083604 (2013). [CrossRef] [PubMed]
  31. M.  Kang, F.  Liu, J.  Li, “Effective spontaneous PT-symmetry breaking in hybridized metamaterials,” Phys. Rev. A 87(5), 053824 (2013). [CrossRef]
  32. N.  Lazarides, G. P.  Tsironis, “Gain-driven discrete breathers in PT-symmetric nonlinear metamaterials,” Phys. Rev. Lett. 110(5), 053901 (2013). [CrossRef] [PubMed]
  33. G.  Castaldi, S.  Savoia, V.  Galdi, A.  Alù, N.  Engheta, “PT metamaterials via complex-coordinate transformation optics,” Phys. Rev. Lett. 110(17), 173901 (2013). [CrossRef] [PubMed]
  34. Y. V.  Bludov, R.  Driben, V. V.  Konotop, B. A.  Malomed, “Instabilities, solitons and rogue waves in PT-coupled nonlinear waveguides,” J. Opt. 15(6), 064010 (2013). [CrossRef]
  35. M.  Kulishov, B.  Kress, R.  Slavík, “Resonant cavities based on Parity-Time-symmetric diffractive gratings,” Opt. Express 21(8), 9473–9483 (2013). [CrossRef] [PubMed]
  36. P.  Berini, “Plasmon-polariton waves guided by thin lossy metal films of finite width: Bound modes of symmetric structures,” Phys. Rev. B 61(15), 10484–10503 (2000). [CrossRef]
  37. P.  Berini, “Plasmon-polariton waves guided by thin lossy metal films of finite width: Bound modes of asymmetric structures,” Phys. Rev. B 63(12), 125417 (2001). [CrossRef]
  38. D. J.  Bergman, M. I.  Stockman, “Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems,” Phys. Rev. Lett. 90(2), 027402 (2003). [CrossRef] [PubMed]
  39. M. P.  Nezhad, K.  Tetz, Y.  Fainman, “Gain assisted propagation of surface plasmon polaritons on planar metallic waveguides,” Opt. Express 12(17), 4072–4079 (2004). [CrossRef] [PubMed]
  40. M. A.  Noginov, V. A.  Podolskiy, G.  Zhu, M.  Mayy, M.  Bahoura, J. A.  Adegoke, B. A.  Ritzo, K.  Reynolds, “Compensation of loss in propagating surface plasmon polariton by gain in adjacent dielectric medium,” Opt. Express 16(2), 1385–1392 (2008). [CrossRef] [PubMed]
  41. A.  Boltasseva, V. S.  Volkov, R. B.  Nielsen, E.  Moreno, S. G.  Rodrigo, S. I.  Bozhevolnyi, “Triangular metal wedges for subwavelength plasmon-polariton guiding at telecom wavelengths,” Opt. Express 16(8), 5252–5260 (2008). [CrossRef] [PubMed]
  42. R. F.  Oulton, V. J.  Sorger, T.  Zentgraf, R.-M.  Ma, C.  Gladden, L.  Dai, G.  Bartal, X.  Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009). [CrossRef] [PubMed]
  43. M. A.  Noginov, G.  Zhu, A. M.  Belgrave, R.  Bakker, V. M.  Shalaev, E. E.  Narimanov, S.  Stout, E.  Herz, T.  Suteewong, U.  Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009). [CrossRef] [PubMed]
  44. A.  Degiron, S.-Y.  Cho, T.  Tyler, N. M.  Jokerst, D. R.  Smith, “Directional coupling between dielectric and long-range plasmon waveguides,” New J. Phys. 11(1), 015002 (2009). [CrossRef]
  45. I.  De Leon, P.  Berini, “Amplification of long-range surface plasmons by a dipolar gain medium,” Nat. Photonics 4(6), 382–387 (2010). [CrossRef]
  46. R.-M.  Ma, R. F.  Oulton, V. J.  Sorger, G.  Bartal, X.  Zhang, “Room-temperature sub-diffraction-limited plasmon laser by total internal reflection,” Nat. Mater. 10(2), 110–113 (2011). [CrossRef] [PubMed]
  47. A.  Castanié, D.  Felbacq, “Confined plasmonic modes in a nanocavity,” Opt. Commun. 285(16), 3353–3357 (2012). [CrossRef]
  48. H.  Benisty, M.  Besbes, “Plasmonic inverse rib waveguiding for tight confinement and smooth interface definition,” J. Appl. Phys. 108(6), 063108 (2010). [CrossRef]
  49. H.  Benisty, A.  Degiron, A.  Lupu, A.  De Lustrac, S.  Chénais, S.  Forget, M.  Besbes, G.  Barbillon, A.  Bruyant, S.  Blaize, G.  Lérondel, “Implementation of PT symmetric devices using plasmonics: principle and applications,” Opt. Express 19(19), 18004–18019 (2011). [CrossRef] [PubMed]
  50. H.  Benisty, M.  Besbes, “Confinement and optical properties of the plasmonic inverse-rib waveguide,” J. Opt. Soc. Am. B 29(4), 818–826 (2012). [CrossRef]
  51. H.  Benisty, C.  Yan, A.  Degiron, A. T.  Lupu, “Healing near-PT-symmetric structures to restore their characteristic singularities: Analysis and examples,” J. Lightwave Technol. 30(16), 2675–2683 (2012). [CrossRef]
  52. H.  Kogelnik, R. V.  Schmidt, “Switched directional couplers with alternating Δβ,” IEEE J. Quantum Electron. 12(7), 396–401 (1976). [CrossRef]
  53. A. Snyder and J. D. Love, Optical Waveguide Theory (Kluwer, 2000).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited