OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 18 — Sep. 9, 2013
  • pp: 21677–21684

Monolithic 626 nm single-mode AlGaInP DBR diode laser

G. Blume, O. Nedow, D. Feise, J. Pohl, and K. Paschke  »View Author Affiliations

Optics Express, Vol. 21, Issue 18, pp. 21677-21684 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1038 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Single-mode lasers below 630 nm are still realized using complex laser systems. We present distributed Bragg reflector (DBR) ridge waveguide lasers (RWL) based on AlGaInP. When packaged into sealed TO-3 housings and cooled internally to about 0°C the DBR-RWL emit more than 50 mW at a wavelength of 626.0 nm into a nearly diffraction-limited single longitudinal mode with a spectral width below 1 MHz. These new monolithic diode lasers have the potential to drastically miniaturize existing set-ups e.g. for quantum information processing.

© 2013 OSA

OCIS Codes
(140.2020) Lasers and laser optics : Diode lasers
(140.3570) Lasers and laser optics : Lasers, single-mode
(140.7300) Lasers and laser optics : Visible lasers
(300.3700) Spectroscopy : Linewidth
(020.3320) Atomic and molecular physics : Laser cooling

ToC Category:
Lasers and Laser Optics

Original Manuscript: July 15, 2013
Revised Manuscript: August 23, 2013
Manuscript Accepted: August 26, 2013
Published: September 6, 2013

G. Blume, O. Nedow, D. Feise, J. Pohl, and K. Paschke, "Monolithic 626 nm single-mode AlGaInP DBR diode laser," Opt. Express 21, 21677-21684 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. F. Johnston, R. H. Brady, and W. Proffitt, “Powerful single-frequency ring dye laser spanning the visible spectrum,” Appl. Opt.21(13), 2307–2316 (1982). [CrossRef] [PubMed]
  2. H. Y. Lin, H. M. Tan, J. G. Miao, T. C. Cui, S. C. Su, and J. Guo, “Extra-cavity, widely tunable, continuous wave MgO-doped PPLN optical parametric oscillator pumped with a Nd:YVO4 laser,” Opt. Mater.32(1), 257–260 (2009). [CrossRef]
  3. G. Hatakoshi, K. Itaya, M. Ishikawa, M. Okajima, and Y. Uematsu, “Short-wavelength InGaAlP visible laser-diodes,” IEEE J. Quantum Electron.27(6), 1476–1482 (1991). [CrossRef]
  4. T. Nishida, N. Shimada, T. Ogawa, M. Miyashita, and T. Yagi, “Short wavelength limitation in high power AlGaInP laser diodes,” Proc. SPIE7918, 791811 (2011). [CrossRef]
  5. R. Bohdan, A. Bercha, W. Trzeciakowski, F. Dybała, B. Piechal, M. B. Sanayeh, M. Reufer, and P. Brick, “Yellow AlGaInP/InGaP laser diodes achieved by pressure and temperature tuning,” J. Appl. Phys.104(6), 063105 (2008). [CrossRef]
  6. R. Bohdan, A. Bercha, W. Trzeciakowski, F. Dybała, B. Piechal, M. B. Sanayeh, M. Reufer, and P. Brick, “Room temperature 633 nm tapered diode lasers with external wavelength stabilization,” IET Optoelectron.3(6), 320–325 (2009). [CrossRef]
  7. A. I. Bawamia, G. Blume, B. Eppich, A. Ginolas, S. Spießerger, M. Thomas, B. Sumpf, and G. Erbert, “Miniaturized tunable external cavity diode laser with single-mode operation and a narrow linewidth at 633 nm,” IEEE Photon. Technol. Lett.23(22), 1676–1678 (2011). [CrossRef]
  8. F. Barth, H.-P. Gauggel, C. Geng, F. Scholz, J. Hommel, R. Winterhoff, and H. Schweizer, “Fabrication and operation of first-order GaInP/AlGaInP DFB lasers at room temperature,” Electron. Lett.31(5), 367–368 (1995). [CrossRef]
  9. B. Pezeshki, M. Hagberg, B. Lu, M. Zelinski, S. Zou, and E. I. Kolev, “High power and diffraction-limited red lasers,” Proc. SPIE3947, 80–90 (2000). [CrossRef]
  10. D. Feise, W. John, F. Bugge, G. Blume, T. Hassoun, J. Fricke, K. Paschke, and G. Erbert, “96 mW longitudinal single mode red-emitting distributed Bragg reflector ridge waveguide laser with tenth order surface gratings,” Opt. Lett.37(9), 1532–1534 (2012). [CrossRef] [PubMed]
  11. G. Blume, M. Schiemangk, J. Pohl, D. Feise, P. Ressel, B. Sumpf, A. Wicht, and K. Paschke, “Narrow Linewidth of 633-nm DBR Ridge-Waveguide Lasers,” IEEE Photon. Technol. Lett.25(6), 550–552 (2013). [CrossRef]
  12. V. Zhelyazkova, A. Cournol, T. E. Wall, A. Matsushima, J. J. Hudson, E. A. Hinds, M. R. Tarbutt, and B. E. Sauer, “Laser cooling and slowing of CaF molecules,” arXiv (2013). http://arxiv.org/pdf/1308.0421.pdf
  13. C. Monroe, D. M. Meekhof, B. E. King, S. R. Jefferts, W. M. Itano, D. J. Wineland, and P. Gould, “Resolved-Sideband Raman Cooling of a Bound Atom to the 3D Zero-Point Energy,” Phys. Rev. Lett.75(22), 4011–4014 (1995). [CrossRef] [PubMed]
  14. H. Ball, M. W. Lee, S. D. Gensemer, and M. J. Biercuk, “A high-power 626 nm diode laser system for Beryllium ion trapping,” Rev. Sci. Instrum.84(6), 063107 (2013). [CrossRef] [PubMed]
  15. F. M. J. Cozijn, J. Biesheuvel, A. S. Flores, W. Ubachs, G. Blume, A. Wicht, K. Paschke, G. Erbert, and J. C. J. Koelemeij, “Laser cooling of beryllium ions using a frequency-doubled 626 nm diode laser,” Opt. Lett.38(13), 2370–2372 (2013). [CrossRef] [PubMed]
  16. C. Kaspari, M. Zorn, M. Weyers, and G. Erbert, “Growth parameter optimization of the GaInP/AlGaInP active zone of 635nm red laser diodes,” J. Cryst. Growth310(23), 5175–5177 (2008). [CrossRef]
  17. D. Feise, W. John, F. Bugge, C. Fiebig, G. Blume, and K. Paschke, “High-spectral-radiance, red-emitting tapered diode lasers with monolithically integrated distributed Bragg reflector surface gratings,” Opt. Express20(21), 23374–23382 (2012). [CrossRef] [PubMed]
  18. P. Bienstman and R. Baets, “Optical modelling of photonic crystals and VCSELs using eigenmode expansion and perfectly matched layers,” Opt. Quantum Electron.33(4/5), 327–341 (2001). [CrossRef]
  19. Available online: http://camfr.sourceforge.net/
  20. J. Fricke, W. John, A. Klehr, P. Ressel, L. Weixelbaum, H. Wenzel, and G. Erbert, “Properties and fabrication of high-order Bragg gratings for wavelength stabilization of diode lasers,” Semicond. Sci. Technol.27(5), 055009 (2012). [CrossRef]
  21. I. Vurgaftman, J. R. Meyer, and L. R. Ram-Mohan, “Band parameters for III–V compound semiconductors and their alloys,” J. Appl. Phys.89(11), 5815–5875 (2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited