OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 18 — Sep. 9, 2013
  • pp: 21685–21692

Optimally shaped narrowband picosecond pulses for femtosecond stimulated Raman spectroscopy

David P. Hoffman, David Valley, Scott R. Ellis, Mark Creelman, and Richard A. Mathies  »View Author Affiliations


Optics Express, Vol. 21, Issue 18, pp. 21685-21692 (2013)
http://dx.doi.org/10.1364/OE.21.021685


View Full Text Article

Enhanced HTML    Acrobat PDF (1309 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A comparison between a Fabry-Pérot etalon filter and a conventional grating filter for producing the picosecond (ps) Raman pump pulses for femtosecond stimulated Raman spectroscopy (FSRS) is presented. It is shown that for pulses of equal energy the etalon filter produces Raman signals twice as large as that of the grating filter while suppressing the electronically resonant background signal. The time asymmetric profile of the etalon-generated pulse is shown to be responsible for both of these observations. A theoretical discussion is presented which quantitatively supports this hypothesis. It is concluded that etalons are the ideal method for the generation of narrowband ps pulses for FSRS because of the optical simplicity, efficiency, improved FSRS intensity and reduced backgrounds.

© 2013 OSA

OCIS Codes
(170.5660) Medical optics and biotechnology : Raman spectroscopy
(320.7150) Ultrafast optics : Ultrafast spectroscopy

ToC Category:
Ultrafast Optics

History
Original Manuscript: July 15, 2013
Revised Manuscript: August 16, 2013
Manuscript Accepted: August 20, 2013
Published: September 6, 2013

Virtual Issues
Vol. 8, Iss. 10 Virtual Journal for Biomedical Optics

Citation
David P. Hoffman, David Valley, Scott R. Ellis, Mark Creelman, and Richard A. Mathies, "Optimally shaped narrowband picosecond pulses for femtosecond stimulated Raman spectroscopy," Opt. Express 21, 21685-21692 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-18-21685


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. V. Kumar, R. Osellame, R. Ramponi, G. Cerullo, and M. Marangoni, “Background-free broadband CARS spectroscopy from a 1-MHz ytterbium laser,” Opt. Express19(16), 15143–15148 (2011). [CrossRef] [PubMed]
  2. H. U. Stauffer, J. D. Miller, S. Roy, J. R. Gord, and T. R. Meyer, “Communication: Hybrid femtosecond/picosecond rotational coherent anti-Stokes Raman scattering thermometry using a narrowband time-asymmetric probe pulse,” J. Chem. Phys.136(11), 111101 (2012). [CrossRef] [PubMed]
  3. A. Lagutchev, S. A. Hambir, and D. D. Dlott, “Nonresonant Background Suppression in Broadband Vibrational Sum-Frequency Generation Spectroscopy,” J. Phys. Chem. C111(37), 13645–13647 (2007). [CrossRef]
  4. I. V. Stiopkin, H. D. Jayathilake, C. Weeraman, and A. V. Benderskii, “Temporal effects on spectroscopic line shapes, resolution, and sensitivity of the broad-band sum frequency generation,” J. Chem. Phys.132(23), 234503 (2010). [CrossRef] [PubMed]
  5. D. W. McCamant, P. Kukura, S. Yoon, and R. A. Mathies, “Femtosecond broadband stimulated Raman spectroscopy: Apparatus and methods,” Rev. Sci. Instrum.75(11), 4971–4980 (2004). [CrossRef] [PubMed]
  6. P. Kukura, D. W. McCamant, and R. A. Mathies, “Femtosecond Stimulated Raman Spectroscopy,” Annu. Rev. Phys. Chem.58(1), 461–488 (2007). [CrossRef] [PubMed]
  7. K. E. Dorfman, B. P. Fingerhut, and S. Mukamel, “Broadband infrared and Raman probes of excited-state vibrational molecular dynamics: simulation protocols based on loop diagrams,” Phys. Chem. Chem. Phys.15(29), 12348–12359 (2013). [CrossRef] [PubMed]
  8. A. Weigel and N. P. Ernsting, “Excited Stilbene: Intramolecular Vibrational Redistribution and Solvation Studied by Femtosecond Stimulated Raman Spectroscopy,” J. Phys. Chem. B114(23), 7879–7893 (2010). [CrossRef] [PubMed]
  9. D. P. Hoffman and R. A. Mathies, “Photoexcited structural dynamics of an azobenzene analog 4-nitro-4′-dimethylamino-azobenzene from femtosecond stimulated Raman,” Phys. Chem. Chem. Phys.14(18), 6298–6306 (2012). [CrossRef] [PubMed]
  10. K. E. Brown, B. S. Veldkamp, D. T. Co, and M. R. Wasielewski, “Vibrational Dynamics of a Perylene–Perylenediimide Donor–Acceptor Dyad Probed with Femtosecond Stimulated Raman Spectroscopy,” J. Phys. Chem. Lett. 2362–2366 (2012).
  11. D. P. Hoffman, O. P. Lee, J. E. Millstone, M. S. Chen, T. A. Su, M. Creelman, J. M. J. Fréchet, and R. A. Mathies, “Electron Transfer Dynamics of Triphenylamine Dyes Bound to TiO2 Nanoparticles from Femtosecond Stimulated Raman Spectroscopy,” J. Phys. Chem. C117(14), 6990–6997 (2013). [CrossRef]
  12. P. Kukura, D. W. McCamant, S. Yoon, D. B. Wandschneider, and R. A. Mathies, “Structural observation of the primary isomerization in vision with femtosecond-stimulated Raman,” Science310(5750), 1006–1009 (2005). [CrossRef] [PubMed]
  13. J. Dasgupta, R. R. Frontiera, K. C. Taylor, J. C. Lagarias, and R. A. Mathies, “Ultrafast excited-state isomerization in phytochrome revealed by femtosecond stimulated Raman spectroscopy,” Proc. Natl. Acad. Sci. U.S.A.106(6), 1784–1789 (2009). [CrossRef] [PubMed]
  14. C. Fang, R. R. Frontiera, R. Tran, and R. A. Mathies, “Mapping GFP structure evolution during proton transfer with femtosecond Raman spectroscopy,” Nature462(7270), 200–204 (2009). [CrossRef] [PubMed]
  15. P. Hamm, M. Lim, and R. M. Hochstrasser, “Structure of the Amide I Band of Peptides Measured by Femtosecond Nonlinear-Infrared Spectroscopy,” J. Phys. Chem. B102(31), 6123–6138 (1998). [CrossRef]
  16. D. M. Jonas, “Two-dimensional femtosecond spectroscopy,” Annu. Rev. Phys. Chem.54(1), 425–463 (2003). [CrossRef] [PubMed]
  17. M. Born, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 7th expanded ed (Cambridge University Press, 1999).
  18. E. Pontecorvo, S. M. Kapetanaki, M. Badioli, D. Brida, M. Marangoni, G. Cerullo, and T. Scopigno, “Femtosecond stimulated Raman spectrometer in the 320-520nm range,” Opt. Express19(2), 1107–1112 (2011). [CrossRef] [PubMed]
  19. E. Pontecorvo, C. Ferrante, C. G. Elles, and T. Scopigno, “Spectrally tailored narrowband pulses for femtosecond stimulated Raman spectroscopy in the range 330-750 nm,” Opt. Express21(6), 6866–6872 (2013). [CrossRef] [PubMed]
  20. S.-Y. Lee, D. Zhang, D. W. McCamant, P. Kukura, and R. A. Mathies, “Theory of femtosecond stimulated Raman spectroscopy,” J. Chem. Phys.121(8), 3632–3642 (2004). [CrossRef] [PubMed]
  21. R. Zadoyan, Prism Compressor for Ultrashort Laser Pulses (Application Note 29, 2006).
  22. G. Cerullo and S. De Silvestri, “Ultrafast optical parametric amplifiers,” Rev. Sci. Instrum.74(1), 1 (2003). [CrossRef]
  23. S. Yoon, D. W. McCamant, P. Kukura, R. A. Mathies, D. Zhang, and S.-Y. Lee, “Dependence of line shapes in femtosecond broadband stimulated Raman spectroscopy on pump-probe time delay,” J. Chem. Phys.122(2), 024505 (2005). [CrossRef] [PubMed]
  24. D. P. Hoffman, “FSRS-LabVIEW,” https://github.com/david-hoffman/FSRS-LabVIEW .
  25. A. Weigel, A. Dobryakov, B. Klaumünzer, M. Sajadi, P. Saalfrank, and N. P. Ernsting, “Femtosecond Stimulated Raman Spectroscopy of Flavin after Optical Excitation,” J. Phys. Chem. B115(13), 3656–3680 (2011). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited