OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 18 — Sep. 9, 2013
  • pp: 21708–21713

Multi foci with diffraction limited resolution

Erik H. Waller and Georg von Freymann  »View Author Affiliations

Optics Express, Vol. 21, Issue 18, pp. 21708-21713 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (987 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The generation of multi foci is an established method for high-speed parallel direct laser writing, scanning microscopy and for optical tweezer arrays. However, the quality of multi foci reduces with increasing resolution due to interference effects. Here, we report on a spatial-light-modulator-based method that allows for highly uniform, close to Gaussian spots with diffraction limited resolution using a wavelength of 780 nm. We introduce modifications of a standard algorithm that calculates a field distribution on the entrance pupil of a high numerical aperture objective splitting the focal volume into a multitude of spots. Our modified algorithm compares favourably to a commonly used algorithm in full vectorial calculations as well as in point-spread-function measurements. The lateral and axial resolution limits of spots generated by the new algorithm are found to be close to the diffraction limit.

© 2013 OSA

OCIS Codes
(050.1970) Diffraction and gratings : Diffractive optics
(070.6120) Fourier optics and signal processing : Spatial light modulators
(110.1080) Imaging systems : Active or adaptive optics

ToC Category:
Imaging Systems

Original Manuscript: June 18, 2013
Revised Manuscript: July 22, 2013
Manuscript Accepted: July 23, 2013
Published: September 6, 2013

Virtual Issues
Vol. 8, Iss. 10 Virtual Journal for Biomedical Optics

Erik H. Waller and Georg von Freymann, "Multi foci with diffraction limited resolution," Opt. Express 21, 21708-21713 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. H. Buist, M. Müller, J. Squier, and G. J. Brakenhoff, “Real time two-photon absorption microscopy using multi point excitation,” J. of Microscopy192, 217–226 (1998). [CrossRef]
  2. T. Nielsen, M. Fricke, D. Hellweg, and P. Andresen, “High efficiency beam splitter for multifocal multiphoton microscopy,” J. of Microscopy201, 368–376 (2000). [CrossRef]
  3. L. Kelemen, S. Valkai, and P. Ormos, “Parallel photopolymerisation with complex light patterns generated by diffractive optical elements,” Opt. Express15, 14488–14497 (2007). [CrossRef] [PubMed]
  4. N. J. Jenness, K. D. Wulff, M. S. Johannes, M. P. Padgett, D. G. Cole, and R. L. Clark, “Three-dimensional parallel holographic micropatterning using a spatial light modulator,” Opt. Express16, 15942–15948 (2008). [CrossRef] [PubMed]
  5. C. Mauclair, G. Cheng, N. Huot, E. Audouard, A. Rosenfeld, I. V. Hertel, and R. Stoian, “Dynamic ultrafast laser spatial tailoring for parallel micromachining of photonic devices in transparent materials, ”Opt. Express15, 14488–14497 (2007).
  6. S. Hasegawa and Y. Hayasaki, “Adaptive optimization of a hologram in holographic femtosecond laser processing system, ”Opt. Letters34, 22–24 (2009). [CrossRef]
  7. N. J. Jenness, R. T. Hill, A. Hucknall, A. Chilkoti, and R. L. Clark, “A versatile diffractive maskless lithography for single-shot and serial microfabrication,” Opt. Express18, 11754–11762 (2010). [CrossRef] [PubMed]
  8. M. Sakakura, T. Sawano, Y. Shimotsuma, K. Miura, and K. Hirao, “Fabrication of three-dimensional 1 × 4 splitter waveguides inside a glass substrate with spatially phase modulated laser beam, ”Opt. Express18, 12136–12142 (2010). [CrossRef] [PubMed]
  9. K. Obata, J. Koch, U. Hinze, and B. N. Chichkov, “Multi-focus two-photon polymerization technique based on individually controlled phase modulation, ”Opt. Express18, 17193–17200 (2010). [CrossRef] [PubMed]
  10. C. Bay, N. Hübner, J. Freeman, and T. Wilkinson, “Maskless photolithography via holographic optical projection, ”Opt. Letters35, 2230–2232 (2010). [CrossRef]
  11. A. Jesacher and M. J. Booth, “Parallel direct laser writing in three dimensions with spatially dependent aberration correction, ”Opt. Express18, 21090–21099 (2010). [CrossRef] [PubMed]
  12. S. D. Gittard, A. Nguyen, K. Obata, A. Koroleva, R. J. Narayan, and B. N. Chichkov, “Fabrication of microscale medical devices by two-photon polymerization with multiple foci via a spatial light modulator, ”Opt. Express2, 3167–3178 (2011). [CrossRef]
  13. P. S. Salter and M. J. Booth, “Addressable microlens array for parallel laser microfabrication, ”Opt. Letters36, 2302–2304 (2011). [CrossRef]
  14. D. Liu, W. Perrie, Z. Kuang, P. J. Scully, A. Baum, S. Liang, A. Taranu, S. P. Edwardson, E. Fearon, G. Dearden, and K. G. Watkins, “Multiple Beam Internal Structuring of Poly(methyl methacrylate),” JLMN7, 208–211 (2012). [CrossRef]
  15. R. L. Eriksen, V. R. Daria, and J. Glückstad, “Fully dynamic multiple-beam optical tweezers, ”Opt. Express10, 597–602 (2002). [CrossRef] [PubMed]
  16. D. G. Grier, “A revolution in optical manipulation,” Nature424, 810–816 (2003). [CrossRef] [PubMed]
  17. P. J. Rodrigo, V. R. Daria, and J. Glückstad, “Real-time three-dimensional optical micromanipulation of multiple particles and living cells, ”Opt. Letters29, 2270–2272 (2004). [CrossRef]
  18. M. Polin, K. Ladavac, S. Lee, Y. Roichman, and D. G. Grier, “Optimized holographic optical traps, ”Opt. Express13, 7458–7465 (2005) [CrossRef]
  19. E. Schonbrun, R. Piestun, P. Jordan, J. Cooper, K. D. Wulff, J. Courtial, and M. Padgett, “3D interferometric optical tweezers using a single spatial light modulator,” Opt. Express15, 14488–14497 (2007).
  20. K. Dholakia and T. Cizmar, “Shaping the future of manipulation,” Nature Photonics5, 335–342 (2011). [CrossRef]
  21. D. McGloin, G. C. Spalding, H. Melville, W. Sibbett, and K. Dholakia, “Applications of spatial light modulators in atom optics, ”Opt. Express11, 158–166 (2003). [CrossRef] [PubMed]
  22. V. Boyer, R. M. Godun, G. Smirne, D. Cassettari, C. M. Chandrashekar, A. B. Deb, Z. J. Laczik, and C. J. Foot, “Dynamic manipulation of Bose-Einstein condensates with a spatial light modulator,” Phys. Rev. A73, 1–4 (2006). [CrossRef]
  23. D. Engström, A. Frank, J. Backsten, M. Goksör, and J. Bengtsson, “Grid-free 3D multiple spot generation with an efficient single-plane FFT-based algorithm, ”Opt. Express17, 9989–10000 (2009). [CrossRef] [PubMed]
  24. J. A. Davia, I. Moreno, J. L. Martinez, T. J. Hernandez, and D. M. Cotrell, “Creating three-dimensional lattice patterns using programmable Dammann gratings,” Appl. Optics50, 3653–3657 (2011). [CrossRef]
  25. J. Albero and I. Moreno, “Grating beam splitting with liquid crystal adaptive optics,” J. of Optics14, 1–9 (2012).
  26. H. Lin and M. Gu, “Creation of diffraction-limited non-Airy multifocal arrays using a spatially shifted vortex beam,” Appl. Phys. Lett.102, 084103 (2013). [CrossRef]
  27. O. Ripoll, V. Kettunen, and H. P. Herzig, “Review of iterative Fourier-transform algorithms for beam shaping applications,” Opt. Eng.43, 25492555 (2004).
  28. R. Di Leonardo, F. Ianni, and G. Ruocco, “Computer generation of optimal holograms for optical trap arrays, ”Opt. Express15, 1913–1922 (2006). [CrossRef]
  29. D. R. Burnham, T. Schneider, and D. T. Chiu, “Effects of aliasing on the fidelity of a two dimensional array of foci generated with a kinoform, ”Opt. Express19, 17121–17126 (2011). [CrossRef] [PubMed]
  30. E. H. Waller, M. Renner, and G. von Freymann, “Active aberration- and point-spread-function control in direct laser writing, ”Opt. Express20, 24949–24956 (2012). [CrossRef] [PubMed]
  31. J. A. Davis, D. M. Cottrell, J. Campos, M. J. Yzuel, and I. Moreno, “Encoding amplitude information onto phase-only filters,” Appl. Optics38, 5004–5013 (1999). [CrossRef]
  32. J. Leach, M. R. Dennis, J. Courtial, and M. J. Padgett, “Vortex knots in light,” New J. of Phys.7, 1–11 (2005). [CrossRef]
  33. B. M. Hanser, M. G. L. Gustafsson, D. A. Agard, and J. W. Sedat, “Phase retrieval for high-numerical-aperture optical systems, ”Opt. Letters28, 801–803 (2003). [CrossRef]
  34. B. M. Hanser, M. G. L. Gustafsson, D. A. Agard, and J. W. Sedat, “Phase-retrieved pupil functions in wide-field fluorescence microscopy,” J. of Microscopy216, 32–48 (2004). [CrossRef]
  35. A. S. van de Nes, L. Billy, S. F. Pereira, and J. J. M. Braat, “Calculation of the vectorial field distribution in a stratified focal region of a high numerical aperture imaging system, ”Opt. Express12, 1281–1293 (2004). [CrossRef] [PubMed]
  36. J. Fischer and M. Wegener, “Three-dimensional optical laser lithography beyond the diffraction limit,” Laser Photonics Rev.7, 22–44 (2012). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited