OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 19 — Sep. 23, 2013
  • pp: 21800–21810

Origin of Bragg reflection peaks splitting in gratings fabricated using a multiple order phase mask

Karol Tarnowski and Waclaw Urbanczyk  »View Author Affiliations


Optics Express, Vol. 21, Issue 19, pp. 21800-21810 (2013)
http://dx.doi.org/10.1364/OE.21.021800


View Full Text Article

Enhanced HTML    Acrobat PDF (1451 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We have studied the effect of waveguide alignment on the reflection spectrum of Bragg gratings fabricated using a multiple order phase mask. We have demonstrated that splitting of certain Bragg peaks observed in earlier experiments reported in literature is caused by formation of the gratings with different periodicities in the waveguide tilted with respect to the phase mask plane due to the interference of non-symmetrical diffraction orders. Analytical expressions for spectral separation of the split peaks have been derived and verified against the experimental data recently presented in literature. The analytical predictions were also confirmed by numerical simulations of intensity distributions behind the multiple order diffraction grating and its projection on the tilted waveguide.

© 2013 OSA

OCIS Codes
(050.2770) Diffraction and gratings : Gratings
(060.3735) Fiber optics and optical communications : Fiber Bragg gratings

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: June 13, 2013
Revised Manuscript: August 1, 2013
Manuscript Accepted: August 3, 2013
Published: September 9, 2013

Citation
Karol Tarnowski and Waclaw Urbanczyk, "Origin of Bragg reflection peaks splitting in gratings fabricated using a multiple order phase mask," Opt. Express 21, 21800-21810 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-19-21800


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, “Photosensitivity in optical fiber waveguides: Application to reflection filter fabrication,” Appl. Phys. Lett.32(10), 647–649 (1978). [CrossRef]
  2. K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, “Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask,” Appl. Phys. Lett.62(10), 1035–1037 (1993). [CrossRef]
  3. G. Meltz, W. W. Morey, and W. H. Glenn, “Formation of Bragg gratings in optical fibers by a transverse holographic method,” Opt. Lett.14(15), 823–825 (1989). [CrossRef] [PubMed]
  4. K. O. Hill, B. Malo, K. A. Vineberg, F. Bilodeau, D. C. Johnson, and I. Skinner, “Efficient mode conversion in telecommunication fibre using externally written gratings,” Electron. Lett.26(16), 1270–1272 (1990). [CrossRef]
  5. P. E. Dyer, R. J. Farley, R. Giedl, K. C. Byron, and D. Reid, “High reflectivity fibre gratings produced by incubated damage using a 193nm ArF laser,” Electron. Lett.30(11), 860–862 (1994). [CrossRef]
  6. Z. Xiong, G. D. Peng, B. Wu, and P. L. Chu, “Highly tunable Bragg gratings in single-mode polymer optical fibers,” IEEE Photon. Technol. Lett.11(3), 352–354 (1999). [CrossRef]
  7. G. Statkiewicz-Barabach, K. Tarnowski, D. Kowal, P. Mergo, and W. Urbanczyk, “Fabrication of multiple Bragg gratings in microstructured polymer fibers using a phase mask with several diffraction orders,” Opt. Express21(7), 8521–8534 (2013). [CrossRef] [PubMed]
  8. K. O. Hill and G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” J. Lightwave Technol.15(8), 1263–1276 (1997). [CrossRef]
  9. S. P. Yam, Z. Brodzeli, S. A. Wade, G. W. Baxter, and S. F. Collins, “Occurrence of features of fiber bragg grating spectra having a wavelength corresponding to the phase mask periodicity,” J. Electron. Sci. Technol.6, 458–461 (2008).
  10. J. D. Mills, C. W. J. Hillman, B. H. Blott, and W. S. Brocklesby, “Imaging of free-space interference patterns used to manufacture fiber bragg gratings,” Appl. Opt.39(33), 6128–6135 (2000). [CrossRef] [PubMed]
  11. H. F. Talbot, “Facts relating to optical science,” Philos. Mag.9, 401–407 (1836).
  12. N. M. Dragomir, C. Rollinson, S. A. Wade, A. J. Stevenson, S. F. Collins, G. W. Baxter, P. M. Farrell, and A. Roberts, “Nondestructive imaging of a type I optical fiber Bragg grating,” Opt. Lett.28(10), 789–791 (2003). [CrossRef] [PubMed]
  13. Z. F. Zhang, C. Zhang, X. M. Tao, G. F. Wang, and G. D. Peng, “Inscription of polymer optical fiber Bragg grating at 962 nm and its potential in strain sensing,” Photon. Technol. Lett.22(21), 1562–1564 (2010). [CrossRef]
  14. B. Malo, D. C. Johnson, F. Bilodeau, J. Albert, and K. O. Hill, “Single-excimer-pulse writing of fiber gratings by use of a zero-order nulled phase mask: grating spectral response and visualization of index perturbations,” Opt. Lett.18(15), 1277–1279 (1993). [CrossRef] [PubMed]
  15. P. E. Dyer, R. J. Farley, and R. Giedl, “Analysis of grating formation with excimer laser irradiated phase masks,” Opt. Commun.115(3-4), 327–334 (1995). [CrossRef]
  16. C. W. Smelser, S. J. Mihailov, D. Grobnic, P. Lu, R. B. Walker, H. Ding, and X. Dai, “Multiple-beam interference patterns in optical fiber generated with ultrafast pulses and a phase mask,” Opt. Lett.29(13), 1458–1460 (2004). [CrossRef] [PubMed]
  17. C. M. Rollinson, S. A. Wade, N. M. Dragomir, G. W. Baxter, S. F. Collins, and A. Roberts, “Reflections near 1030 nm from 1540 nm fibre Bragg gratings: Evidence of a complex refractive index structure,” Opt. Commun.256(4-6), 310–318 (2005). [CrossRef]
  18. C. M. Rollinson, S. A. Wade, B. P. Kouskousis, D. J. Kitcher, G. W. Baxter, and S. F. Collins, “Variations of the growth of harmonic reflections in fiber Bragg gratings fabricated using phase masks,” J. Opt. Soc. Am. A29(7), 1259–1268 (2012). [CrossRef] [PubMed]
  19. S. P. Yam, Z. Brodzeli, B. P. Kouskousis, C. M. Rollinson, S. A. Wade, G. W. Baxter, and S. F. Collins, “Fabrication of a π-phase-shifted fiber Bragg grating at twice the Bragg wavelength with the standard phase mask technique,” Opt. Lett.34(13), 2021–2023 (2009). [CrossRef] [PubMed]
  20. S. A. Wade, W. G. A. Brown, H. K. Bal, F. Sidiroglou, G. W. Baxter, and S. F. Collins, “Effect of phase mask alignment on fiber Bragg grating spectra at harmonics of the Bragg wavelength,” J. Opt. Soc. Am. A29(8), 1597–1605 (2012). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited