OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 19 — Sep. 23, 2013
  • pp: 21823–21828

Picosecond pulsed laser induced optical dichroism in glass with embedded metallic nanoparticles

Mateusz A. Tyrk, W. Allan Gillespie, Gerhard Seifert, and Amin Abdolvand  »View Author Affiliations


Optics Express, Vol. 21, Issue 19, pp. 21823-21828 (2013)
http://dx.doi.org/10.1364/OE.21.021823


View Full Text Article

Enhanced HTML    Acrobat PDF (1337 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Picosecond (~10 ps) pulsed laser irradiation at 532 nm led to the efficient and scalable fabrication of dichroic areas in glass with spherical silver nanoparticles of ~30 – 40 nm in diameter embedded in a surface layer of thickness ~20 μm. The observed dichroism is due to the uniform and permanent shape transformation of the nanoparticles - from spherical to spheroidal shapes - throughout the irradiated areas and along the laser polarization direction, paving the way for affordable manufacture of polarization-selective diffractive optical elements. The shape modification threshold and the dichroism as a result of Surface Plasmon Resonance band separation were identified. The process was then studied as a function of the laser polarization, repetition rate and the number of pulses fired per spot.

© 2013 OSA

OCIS Codes
(140.3390) Lasers and laser optics : Laser materials processing
(160.2750) Materials : Glass and other amorphous materials
(160.4670) Materials : Optical materials
(160.4236) Materials : Nanomaterials

ToC Category:
Materials

History
Original Manuscript: July 2, 2013
Revised Manuscript: August 7, 2013
Manuscript Accepted: August 14, 2013
Published: September 9, 2013

Citation
Mateusz A. Tyrk, W. Allan Gillespie, Gerhard Seifert, and Amin Abdolvand, "Picosecond pulsed laser induced optical dichroism in glass with embedded metallic nanoparticles," Opt. Express 21, 21823-21828 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-19-21823


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer, 1995).
  2. K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment,” J. Phys. Chem. B107(3), 668–677 (2003). [CrossRef]
  3. R. Jin, Y. C. Cao, E. Hao, G. S. Métraux, G. C. Schatz, and C. A. Mirkin, “Controlling anisotropic nanoparticle growth through plasmon excitation,” Nature425(6957), 487–490 (2003). [CrossRef] [PubMed]
  4. M. S. Gudiksen, L. J. Lauhon, J. Wang, D. C. Smith, and C. M. Lieber, “Growth of nanowire superlattice structures for nanoscale photonics and electronics,” Nature415(6872), 617–620 (2002). [CrossRef] [PubMed]
  5. P. Chakaraborty, “Metal nanoclusters in glasses as nonlinear photonic materials,” J. Mater. Sci.33(9), 2235–2249 (1998). [CrossRef]
  6. A. Abdolvand, A. Podlipensky, S. Matthias, F. Syrowatka, U. Goslele, G. Seifert, and H. Graener, “Metallodielectric two-dimensional photonic structures made by electric field microstructuring of nanocomposite glass,” Adv. Mater.17(24), 2983–2987 (2005). [CrossRef]
  7. A. Stalmashonak, A. Abdolvand, and G. Seifert, “Metal-glass nanocomposites for optical storage of information,” Appl. Phys. Lett.99(20), 201904 (2011). [CrossRef]
  8. L. A. H. Fleming, S. Wackerow, A. C. Hourd, W. A. Gillespie, G. Seifert, and A. Abdolvand, “Diffractive optical element embedded in silver-doped nanocomposite glass,” Opt. Express20(20), 22579–22584 (2012). [CrossRef]
  9. A. Podlipensky, A. Abdolvand, G. Seifert, and H. Graener, “Femtosecond laser assisted production of dichroitic 3D structures in composite glass containing Ag nanoparticles,” Appl. Phys., A Mater. Sci. Process.80(8), 1647–1652 (2005). [CrossRef]
  10. M. Kaempfe, G. Seifert, K.-J. Berg, H. Hofmeister, and H. Graener, “Polarization dependence of the permanent deformation of silver nanoparticles in glass by ultrashort laser pulses,” Eur. Phys. J. D16(1), 237–240 (2001). [CrossRef]
  11. G. Seifert, M. Kaempfe, K.-J. Berg, and H. Graener, “Femtosecond pump-probe investigation of ultrafast silver nanoparticle deformation in a glass matrix,” Appl. Phys. B71(6), 795–800 (2000). [CrossRef]
  12. S. Wackerow, G. Seifert, and A. Abdolvand, “Homogenous silver-doped nanocomposite glass,” Opt. Mater. Express1(7), 1224–1231 (2011). [CrossRef]
  13. K.-J. Berg, A. Berger, and H. Hofmeister, “Small silver particle in glass-surface layers produced by sodium-silver ion-exchange-their concentration and size depth profile,” Z. Phys. D20(1-4), 309–311 (1991). [CrossRef]
  14. V. G. Farafonov and N. V. Voshchinnikov, “Optical properties of spheroidal particles,” Astrophys. Space Sci.204(1), 19–86 (1993). [CrossRef]
  15. A. Stalmashonak, A. A. Unal, H. Graener, and G. Seifert, “Effects of temperature on laser-induced shape modification of silver nanoparticles embedded in glass,” J. Phys. Chem. C113(28), 12028–12032 (2009). [CrossRef]
  16. A. Stalmashonak, A. Podlipensky, G. Seifert, and H. Graener, “Intensity-driven, laser induced transformation of Ag nanospheres to anisotropic shapes,” Appl. Phys. B94(3), 459–465 (2009). [CrossRef]
  17. A. Stalmashonak, G. Seifert, and A. Abdolvand, Ultra-Short Pulsed Laser Engineered Metal-Glass Nanocomposites (Springer, 2013).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited