OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 19 — Sep. 23, 2013
  • pp: 21879–21888

Analysis of rainbow scattering by a chiral sphere

Qing-Chao Shang, Zhen-Sen Wu, Tan Qu, Zheng-Jun Li, Lu Bai, and Lei Gong  »View Author Affiliations


Optics Express, Vol. 21, Issue 19, pp. 21879-21888 (2013)
http://dx.doi.org/10.1364/OE.21.021879


View Full Text Article

Enhanced HTML    Acrobat PDF (1257 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Based on the scattering theory of a chiral sphere, rainbow phenomenon of a chiral sphere is numerically analyzed in this paper. For chiral spheres illuminated by a linearly polarized wave, there are three first-order rainbows, with whose rainbow angles varying with the chirality parameter. The spectrum of each rainbow structure is presented and the ripple frequencies are found associated with the size and refractive indices of the chiral sphere. Only two rainbow structures remain when the chiral sphere is illuminated by a circularly polarized plane wave. Finally, the rainbows of chiral spheres with slight chirality parameters are found appearing alternately in E-plane and H-plane with the variation of the chirality.

© 2013 OSA

OCIS Codes
(290.4020) Scattering : Mie theory
(160.1585) Materials : Chiral media
(290.5825) Scattering : Scattering theory

ToC Category:
Scattering

History
Original Manuscript: July 9, 2013
Revised Manuscript: August 26, 2013
Manuscript Accepted: September 3, 2013
Published: September 10, 2013

Citation
Qing-Chao Shang, Zhen-Sen Wu, Tan Qu, Zheng-Jun Li, Lu Bai, and Lei Gong, "Analysis of rainbow scattering by a chiral sphere," Opt. Express 21, 21879-21888 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-19-21879


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. V. D. Hulst, Light Scattering by Small Particles (Wiley, New York, 1957).
  2. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1998).
  3. R. T. Wang and H. C. van de Hulst, “Rainbows: Mie computations and the Airy approximation,” Appl. Opt.30(1), 106–117 (1991). [CrossRef] [PubMed]
  4. J. A. Lock, “Contribution of high-order rainbows to the scattering of a Gaussian laser beam by a spherical particle,” J. Opt. Soc. Am. A10(4), 693–706 (1993). [CrossRef]
  5. J. A. Lock, J. M. Jamison, and C. Y. Lin, “Rainbow scattering by a coated sphere,” Appl. Opt.33(21), 4677–4690 (1994). [CrossRef] [PubMed]
  6. Z. S. Wu, L. X. Guo, K. F. Ren, G. Gouesbet, and G. Gréhan, “Improved algorithm for electromagnetic scattering of plane waves and shaped beams by multilayered spheres,” Appl. Opt.36(21), 5188–5198 (1997). [CrossRef] [PubMed]
  7. G. Kaduchak, P. L. Marston, and H. J. Simpson, “E(6) diffraction catastrophe of the primary rainbow of oblate water drops: observations with white-light and laser illumination,” Appl. Opt.33(21), 4691–4696 (1994). [CrossRef] [PubMed]
  8. J. P. A. J. van Beeck and M. L. Riethmuller, “Rainbow phenomena applied to the measurement of droplet size and velocity and to the detection of nonsphericity,” Appl. Opt.35(13), 2259–2266 (1996). [CrossRef] [PubMed]
  9. J. P. A. J. van Beeck, Rainbow Phenomena: Development of a Laser-Based, Non-Intrusive Technique for Measuring Droplet Size, Temperature and Velocity (Technische Universiteit Eindhoven, 1997).
  10. X. Han, K. F. Ren, Z. Wu, F. Corbin, G. Gouesbet, and G. Gréhan, “Characterization of Initial Disturbances in a Liquid Jet by Rainbow Sizing,” Appl. Opt.37(36), 8498–8503 (1998). [CrossRef] [PubMed]
  11. J. P. A. J. van Beeck, L. Zimmer, and M. L. Riethmuller, “Global Rainbow Thermometry for Mean Temperature and Size Measurement of Spray Droplets,” Particle & Particle Systems Characterization18(4), 196–204 (2001). [CrossRef]
  12. M. R. Vetrano, J. P. van Beeck, and M. L. Riethmuller, “Global Rainbow Thermometry: Improvements in the Data Inversion Algorithm and Validation Technique in Liquid-Liquid Suspension,” Appl. Opt.43(18), 3600–3607 (2004). [CrossRef] [PubMed]
  13. J. Wang, G. Gréhan, Y. Han, S. Saengkaew, and G. Gouesbet, “Numerical study of global rainbow technique: sensitivity to non-sphericity of droplets,” Exp. Fluids51(1), 149–159 (2011). [CrossRef]
  14. D. Jaggard, A. Mickelson, and C. Papas, “On electromagnetic waves in chiral media,” Appl. Phys., A Mater. Sci. Process.18, 211–216 (1979).
  15. L. D. Barron, Molecular light scattering and optical activity (Cambridge Univ Pr, 2004).
  16. A. Lakhtakia, V. K. Varadan, and V. V. Varadan, Time-Harmonic Electromagnetic Fields in Chiral Media, Lecture Notes in Physics (Springer, 1989), Vol. 335.
  17. D. L. Jaggard and X. Sun, “Theory of chiral multilayers,” J. Opt. Soc. Am. A9(5), 804–813 (1992). [CrossRef]
  18. L. John, “Optical properties of isotropic chiral media,” Pure and Applied Optics: Journal of the European Optical Society Part A5(4), 417–443 (1996). [CrossRef]
  19. S. Bassiri, C. Papas, and N. Engheta, “Electromagnetic wave propagation through a dielectric-chiral interface and through a chiral slab,” J. Opt. Soc. Am. A5(9), 1450–1459 (1988). [CrossRef]
  20. M. Silverman, “Reflection and refraction at the surface of a chiral medium: comparison of gyrotropic constitutive relations invariant or noninvariant under a duality transformation,” J. Opt. Soc. Am. A3(6), 830–837 (1986). [CrossRef]
  21. A. Lakhtakia, V. V. Varadan, and V. K. Varadan, “Field equations, Huygens's principle, integral equations, and theorems for radiation and scattering of electromagnetic waves in isotropic chiral media,” J. Opt. Soc. Am. A5(2), 175–184 (1988). [CrossRef]
  22. L. Le-Wei, K. Pang-Shyan, L. Mook-Seng, and Y. Tat-Soon, “A general expression of dyadic Green's functions in radially multilayered chiral media,” IEEE Trans. Antenn. Propag.43(3), 232–238 (1995). [CrossRef]
  23. F. Bohren, “Light scattering by an optically active sphere,” Chem. Phys. Lett.29(3), 458–462 (1974). [CrossRef]
  24. Z.-S. Wu, Q.-C. Shang, and Z.-J. Li, “Calculation of electromagnetic scattering by a large chiral sphere,” Appl. Opt.51(27), 6661–6668 (2012). [CrossRef] [PubMed]
  25. Q.-C. Shang, Z.-S. Wu, T. Qu, Z.-J. Li, L. Bai, and L. Gong, “Analysis of the radiation force and torque exerted on a chiral sphere by a Gaussian beam,” Opt. Express21(7), 8677–8688 (2013). [CrossRef] [PubMed]
  26. D. Sarkar and N. J. Halas, “General vector basis function solution of Maxwell's equations,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics56(1), 1102–1112 (1997). [CrossRef]
  27. Z. S. Wu and Y. P. Wang, “Electromagnetic scattering for multilayered sphere: Recursive algorithms,” Radio Sci.26(6), 1393–1401 (1991). [CrossRef]
  28. A. L. Aden and M. Kerker, “Scattering of electromagnetic wave from concentric sphere,” J. Appl. Phys.22(10), 1242–1246 (1951). [CrossRef]
  29. Y. L. Geng, C. W. Qiu, and N. Yuan, “Exact solution to electromagnetic scattering by an impedance sphere coated with a uniaxial anisotropic layer,” IEEE Trans. Antenn. Propag.57(2), 572–576 (2009). [CrossRef]
  30. X. e. Han, “Study of refractometry of rainbow and applications to the measurement of instability and temperature gradient of a liquid jet,” thesis (Rouen University, 2000).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited