OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 19 — Sep. 23, 2013
  • pp: 21941–21950

Homogenization of bi-anisotropic metasurfaces

Amr Shaltout, Vladimir Shalaev, and Alexander Kildishev  »View Author Affiliations

Optics Express, Vol. 21, Issue 19, pp. 21941-21950 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1256 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Ultrathin metamaterial layers are modeled by a homogeneous bi-anisotropic film to represent various kinds of broken symmetries in photonic nanostructures, and specifically in optical metamaterials and metasurfaces. Two algorithms were developed to obtain the electromagnetic (EM) wave response from a metasurface (direct solver) or the metasurface parameters from the EM wave response (inverse solver) for a bi-anisotropic, subwavelength-thick nanostructured film. The algorithm is applied to two different metasurfaces to retrieve their effective homogeneous bi-anisotropic parameters. The effective layer of the same physical thickness is shown to produce the same response to plane wave excitation as the original metasurface.

© 2013 OSA

OCIS Codes
(100.3190) Image processing : Inverse problems
(310.0310) Thin films : Thin films
(160.3918) Materials : Metamaterials

ToC Category:

Original Manuscript: March 4, 2013
Revised Manuscript: June 27, 2013
Manuscript Accepted: August 13, 2013
Published: September 11, 2013

Amr Shaltout, Vladimir Shalaev, and Alexander Kildishev, "Homogenization of bi-anisotropic metasurfaces," Opt. Express 21, 21941-21950 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. V. M. Shalaev, “Optical negative-index metamaterials,” Nat. Photonics1(1), 41–48 (2007). [CrossRef]
  2. R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science292(5514), 77–79 (2001). [CrossRef] [PubMed]
  3. U. K. Chettiar, S. Xiao, A. V. Kildishev, W. Cai, H. K. Yuan, V. P. Drachev, and V. M. Shalaev, “Optical metamagnetism and negative-index metamaterials,” MRS Bull.33(10), 921–926 (2008). [CrossRef]
  4. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science314(5801), 977–980 (2006). [CrossRef] [PubMed]
  5. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett.85(18), 3966–3969 (2000). [CrossRef] [PubMed]
  6. N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science308(5721), 534–537 (2005). [CrossRef] [PubMed]
  7. N. Engheta, “Antenna-guided light,” Science334(6054), 317–318 (2011). [CrossRef] [PubMed]
  8. N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science334(6054), 333–337 (2011). [CrossRef] [PubMed]
  9. X. Ni, N. K. Emani, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Broadband light bending with plasmonic nanoantennas,” Science335(6067), 427–427 (2012). [CrossRef] [PubMed]
  10. F. Aieta, P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, “Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces,” Nano Lett.12(9), 4932–4936 (2012). [CrossRef] [PubMed]
  11. Y. Zhao, M. A. Belkin, and A. Alù, “Twisted optical metamaterials for planarized ultrathin broadband circular polarizers,” Nat. Commun.3, 870 (2012). [CrossRef] [PubMed]
  12. J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett.99(6), 063908 (2007). [CrossRef] [PubMed]
  13. Z. H. Zhu, C. C. Guo, K. Liu, W. M. Ye, X. D. Yuan, B. Yang, and T. Ma, “Metallic nanofilm half-wave plate based on magnetic plasmon resonance,” Opt. Lett.37(4), 698–700 (2012). [CrossRef] [PubMed]
  14. A. Drezet, C. Genet, and T. W. Ebbesen, “Miniature plasmonic wave plates,” Phys. Rev. Lett.101(4), 043902 (2008). [CrossRef] [PubMed]
  15. Y. Zhao and A. Alù, “Manipulating light polarization with ultrathin plasmonic metasurfaces,” Phys. Rev. B84(20), 205428 (2011). [CrossRef]
  16. D. Smith, S. Schultz, P. Markoš, and C. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B65(19), 195104 (2002). [CrossRef]
  17. A. Alù, “First-principles homogenization theory for periodic metamaterials,” Phys. Rev. B84(7), 075153 (2011). [CrossRef]
  18. A. V. Kildishev, J. D. Borneman, X. Ni, V. M. Shalaev, and V. P. Drachev, “Bianisotropic effective parameters of optical metamagnetics and negative-index materials,” Proc. IEEE99(10), 1691–1700 (2011). [CrossRef]
  19. A. Alù, “Restoring the physical meaning of metamaterial constitutive parameters,” Phys. Rev. B83(8), 081102 (2011). [CrossRef]
  20. I. V. Lindell and A. J. Viitanen, “Eigenwaves in the general uniaxial bianisotropic medium with symmetric parameter dyadics,” Report No. 148 Helsinki Univ. of Technology, Espoo (Finland). Electromagnetics Lab. 1 (1993).
  21. O. Luukkonen, S. I. Maslovski, and S. A. Tretyakov, “A stepwise Nicolson–Ross–Weir-based material parameter extraction method,” IEEE Antennas Wirel. Propag. Lett.10, 1295–1298 (2011). [CrossRef]
  22. D.-H. Kwon, D. H. Werner, A. V. Kildishev, and V. M. Shalaev, “Material parameter retrieval procedure for general bi-isotropic metamaterials and its application to optical chiral negative-index metamaterial design,” Opt. Express16(16), 11822–11829 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited