OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 19 — Sep. 23, 2013
  • pp: 21951–21960

THz radiation from two electron-beams interaction within a bi-grating and a sub-wavelength holes array composite sandwich structure

Yaxin Zhang, Y. Zhou, and L. Dong  »View Author Affiliations


Optics Express, Vol. 21, Issue 19, pp. 21951-21960 (2013)
http://dx.doi.org/10.1364/OE.21.021951


View Full Text Article

Enhanced HTML    Acrobat PDF (1428 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Two electron-beams’ interaction in a sandwich structure composed of a bi-grating and a sub-wavelength holes array is suggested to generate THz radiation in this paper. It shows that this system takes advantage of both bi-grating and sub-wavelength holes array structures. The results demonstrate that surface waves on a bi-grating can couple with mimicking surface plasmons of a sub-wavelength holes array so that the wave-coupling is strong and the field intensity is high in this structure. Moreover, compared with the interaction in the bi-grating structure and sub-wavelength holes array structure, respectively, it shows that in this composite system the two electron-beams’ interaction is more efficient and the modulation depth and radiation intensity have been enhanced significantly. The modulation depth and efficiency can reach 22% and 4%, respectively, and the starting current density is only 12 A/cm2. This radiation system may provide good opportunities for development of multi-electron beam-driven THz radiation sources.

© 2013 OSA

OCIS Codes
(350.5610) Other areas of optics : Radiation
(050.6624) Diffraction and gratings : Subwavelength structures

ToC Category:
Diffraction and Gratings

History
Original Manuscript: May 15, 2013
Revised Manuscript: August 23, 2013
Manuscript Accepted: August 26, 2013
Published: September 11, 2013

Citation
Yaxin Zhang, Y. Zhou, and L. Dong, "THz radiation from two electron-beams interaction within a bi-grating and a sub-wavelength holes array composite sandwich structure," Opt. Express 21, 21951-21960 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-19-21951


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. H.  Siegel, “Terahertz technology,” IEEE Trans. Microw. Theory Tech. 50(3), 910–928 (2002). [CrossRef]
  2. M.  Thumm, “2.2 MW record power of the 0.17 THz European pre-prototype coaxial-cavity gyrotron for ITER,” Terahertz Sci. Technol. 3, 1–20 (2010).
  3. Q.  Hu, “Terahertz quantum cascade lasers and real-time T-rays imaging at video rate,” Terahertz Sci. Technol. 2, 120–130 (2009).
  4. R.  Kleiner, “Applied physics. Filling the terahertz gap,” Science 318, 1254–1255 (2007). [CrossRef] [PubMed]
  5. M.  Masayoshi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007). [CrossRef]
  6. D.  Li, K.  Imasaki, Z.  Yang, G. S.  Park, “Three-dimensional simulation of super-radiation Smith–Purcell radiation,” Appl. Phys. Lett. 88(20), 201501 (2006). [CrossRef]
  7. Y.  Zhang, M.  Hu, Y.  Yang, R.  Zhong, S.  Liu, “Terahertz radiation of electron beam-cylindrical mimicking surface plasmon wave interaction,” J. Phys. D 42(4), 045211–045218 (2009). [CrossRef]
  8. A. S.  Kesar, “Smith–Purcell radiation from a charge moving above a grating of finite length and width,” Phys. Rev. ST Accel. Beams 13(2), 022804–022811 (2010). [CrossRef]
  9. Y. M.  Shin, J. K.  So, K. H.  Jang, J. H.  Won, A.  Srivastava, G. S.  Park, “Superradiant terahertz Smith–Purcell radiation from surface plasmon excited by counterstreaming electron beams,” Appl. Phys. Lett. 90(3), 031502–031504 (2007). [CrossRef]
  10. C.  Prokop, P.  Piot, M. C.  Lin, P.  Stoltz, “Numerical modeling of a table-top tunable Smith–Purcell terahertz free-electron laser operating in the super-radiant regime,” Appl. Phys. Lett. 96(15), 151502 (2010). [CrossRef]
  11. J. B.  Pendry, L.  Martín-Moreno, F. J.  Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004). [CrossRef] [PubMed]
  12. S. G.  Liu, M.  Hu, Y. X.  Zhang, Y. B.  Li, R. B.  Zhong, “Electromagnetic diffraction radiation of a subwavelength-hole array excited by an electron beam,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 80(3), 036602–036611 (2009). [CrossRef] [PubMed]
  13. H. J.  Lezec, T.  Thio, “Diffracted evanescent wave model for enhanced and suppressed optical transmission through subwavelength hole arrays,” Opt. Express 12(16), 3629–3651 (2004). [CrossRef] [PubMed]
  14. K. J.  Koerkamp, S.  Enoch, F. B.  Segerink, N. F.  van Hulst, L.  Kuipers, “Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes,” Phys. Rev. Lett. 92(18), 183901 (2004). [CrossRef] [PubMed]
  15. F. J.  García de Abajo, R.  Gómez-Medina, J. J.  Sáenz, “Full transmission through perfect-conductor subwavelength hole arrays,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(1), 016608–016611 (2005). [CrossRef] [PubMed]
  16. Y. M.  Shin, J. K.  So, K. H.  Jang, J. H.  Won, A.  Srivastava, G. S.  Park, “Evanescent tunneling of an effective surface plasmon excited by convection electrons,” Phys. Rev. Lett. 99(14), 147402 (2007). [CrossRef] [PubMed]
  17. D. R.  Smith, J. B.  Pendry, M. C. K.  Wiltshire, “Metamaterials and negative refractive index,” Science 305(5685), 788–792 (2004). [CrossRef] [PubMed]
  18. W. L.  Barnes, A.  Dereux, T. W.  Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003). [CrossRef] [PubMed]
  19. A. P.  Hibbins, B. R.  Evans, J. R.  Sambles, “Experimental verification of designer surface plasmons,” Science 308(5722), 670–672 (2005). [CrossRef] [PubMed]
  20. S. I.  Bozhevolnyi, J.  Erland, K.  Leosson, P. M.  Skovgaard, J. M.  Hvam, “Waveguiding in surface plasmon polariton band gap structures,” Phys. Rev. Lett. 86(14), 3008–3011 (2001). [CrossRef] [PubMed]
  21. Y. X.  Zhang, L.  Dong, “Enhanced coherent terahertz Smith–Purcell superradiation excited by two electron beams,” Opt. Express 20(20), 22627–22635 (2012). [CrossRef] [PubMed]
  22. Y. X.  Zhang, Y. C.  Zhou, L.  Dong, S. G.  Liu, “Coherent terahertz radiation from high-harmonic component of modulated free-electron beam in a tapered two-asymmetric grating structure,” Appl. Phys. Lett. 101(12), 123503 (2012). [CrossRef]
  23. S. G. Liu, ed., Introduction to Microwave Electronics (Industry Press, 1985).
  24. K. Q. Zhang and D. J. Li, eds., Electromagnetic Theory for Microwaves and Optoelectronics (Publishing House of Electronics Industry, 2001).
  25. D.  Li, Z.  Yang, K.  Imasaki, G. S.  Park, “Partical-in-cell simulation of coherent superradiant Smith–Purcell radiation,” Phys. Rev. ST Accel. Beams 9(4), 040701–040706 (2006). [CrossRef]
  26. J. A.  Dayton, C. L.  Kory, G. T.  Mearini, “Diamond-based sub millimeter backward wave oscillator,” Proc. SPIE 5584, 67–76 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited