OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 19 — Sep. 23, 2013
  • pp: 21961–21969

Waveguide coupled air-slot photonic crystal nanocavity for optomechanics

Wataru Shimizu, Naomi Nagai, Kenta Kohno, Kazuhiko Hirakawa, and Masahiro Nomura  »View Author Affiliations


Optics Express, Vol. 21, Issue 19, pp. 21961-21969 (2013)
http://dx.doi.org/10.1364/OE.21.021961


View Full Text Article

Enhanced HTML    Acrobat PDF (4191 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We investigate a structure consisting of two parallel GaAs thin membranes with an air-slot type photonic crystal (PhC) nanocavity, which is designed to achieve highly efficient optomechanical coupling. The structure shows a large theoretical optomechanical coupling factor of ~990 GHz/nm. We designed, fabricated, and performed optical characterization of a system consisting of a grating coupler, a PhC waveguide, and a PhC nanocavity, which achieves highly efficient vertical emission using the band folding technique. The experimentally obtained overall efficiency is about 0.3% for a microscope objective lens with a moderate numerical aperture of 0.65. This waveguide coupled air-slot PhC nanocavity with efficient vertical light coupling can be useful for on-chip cavity optomechanical systems.

© 2013 OSA

OCIS Codes
(140.3320) Lasers and laser optics : Laser cooling
(140.3945) Lasers and laser optics : Microcavities
(050.5298) Diffraction and gratings : Photonic crystals
(120.4880) Instrumentation, measurement, and metrology : Optomechanics

ToC Category:
Photonic Crystals

History
Original Manuscript: June 18, 2013
Revised Manuscript: August 12, 2013
Manuscript Accepted: September 4, 2013
Published: September 11, 2013

Citation
Wataru Shimizu, Naomi Nagai, Kenta Kohno, Kazuhiko Hirakawa, and Masahiro Nomura, "Waveguide coupled air-slot photonic crystal nanocavity for optomechanics," Opt. Express 21, 21961-21969 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-19-21961


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Chan, T. P. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature478(7367), 89–92 (2011). [CrossRef] [PubMed]
  2. T. J. Kippenberg and K. J. Vahala, “Cavity optomechanics: back-action at the mesoscale,” Science321(5893), 1172–1176 (2008). [CrossRef] [PubMed]
  3. D. Van Thourhout and J. Roels, “Optomechanical Device actuation through the optical gradient force,” Nat. Photonics4(4), 211–217 (2010). [CrossRef]
  4. D. Kleckner and D. Bouwmeester, “Sub-kelvin optical cooling of a micro-mechanical resonator,” Nature444(7115), 75–78 (2006). [CrossRef] [PubMed]
  5. C. H. Metzger and K. Karrai, “Cavity cooling of a microlever,” Nature432(7020), 1002–1005 (2004). [CrossRef] [PubMed]
  6. J. D. Thompson, B. M. Zwickl, A. M. Jayich, F. Marquardt, S. M. Girvin, and J. G. E. Harris, “Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane,” Nature452(7183), 72–75 (2008). [CrossRef] [PubMed]
  7. O. Arcizet, P. F. Cohadon, T. Briant, M. Pinard, and A. Heidmann, “Radiation-pressure cooling and optomechanical instability of a micromirror,” Nature444(7115), 71–74 (2006). [CrossRef] [PubMed]
  8. K. Usami, A. Naesby, T. Bagci, B. Melholt Nielsen, J. Liu, S. Stobbe, P. Lodahl, and E. S. Polzik, “Optical cavity cooling of mechanical modes of a semiconductor nanomembrane,” Nat. Phys.8(2), 168–172 (2012). [CrossRef]
  9. Q. Lin, J. Rosenberg, X. Jiang, K. J. Vahala, and O. Painter, “Mechanical oscillation and cooling actuated by the optical gradient force,” Phys. Rev. Lett.103(10), 103601 (2009). [CrossRef] [PubMed]
  10. G. Anetsberger, O. Arcizet, Q. P. Unterreithmeier, R. Riviere, A. Schliesser, E. M. Weig, J. P. Kotthaus, and T. J. Kippenberg, “Near-field cavity optomechanics with nanomechanical oscillators,” Nat. Phys.5(12), 909–914 (2009). [CrossRef]
  11. Y.-S. Park and H. Wang, “Resolved-sideband and cryogenic cooling of an optomechanical resonator,” Nat. Phys.5(7), 489–493 (2009). [CrossRef]
  12. M. Eichenfield, R. Camacho, J. Chan, K. J. Vahala, and O. Painter, “A picogram- and nanometre-scale photonic-crystal optomechanical cavity,” Nature459(7246), 550–555 (2009). [CrossRef] [PubMed]
  13. M. Eichenfield, J. Chan, R. M. Camacho, K. J. Vahala, and O. Painter, “Optomechanical crystals,” Nature462(7269), 78–82 (2009). [CrossRef] [PubMed]
  14. J. Chan, M. Eichenfield, R. Camacho, and O. Painter, “Optical and mechanical design of a “zipper” photonic crystal optomechanical cavity,” Opt. Express17(5), 3802–3817 (2009). [CrossRef] [PubMed]
  15. E. Gavartin, R. Braive, I. Sagnes, O. Arcizet, A. Beveratos, T. J. Kippenberg, and I. Robert-Philip, “Optomechanical coupling in a two-dimensional photonic crystal defect cavity,” Phys. Rev. Lett.106(20), 203902 (2011). [CrossRef] [PubMed]
  16. Y. Li, J. Zheng, J. Gao, J. Shu, M. S. Aras, and C. W. Wong, “Design of dispersive optomechanical coupling and cooling in ultrahigh-Q/V slot-type photonic crystal cavities,” Opt. Express18(23), 23844–23856 (2010). [CrossRef] [PubMed]
  17. J. Gao, J. F. McMillan, M.-C. Wu, J. Zheng, S. Assefa, and C. W. Wong, “Demonstration of an air-slot modegap confined photonic crystal slab nanocavity with ultrasmall mode volumes,” Appl. Phys. Lett.96(5), 051123 (2010). [CrossRef]
  18. A. H. Safavi-Naeini, T. P. Alegre, M. Winger, and O. Painter, “Optomechanics in an ultrahigh-Q two-dimensional photonic crystal cavity,” Appl. Phys. Lett.97(18), 181106 (2010). [CrossRef]
  19. M. Nomura, “GaAs-based air-slot photonic crystal nanocavity for optomechanical oscillators,” Opt. Express20(5), 5204–5212 (2012). [CrossRef] [PubMed]
  20. N.-V.-Q. Tran, S. Combrie, and A. De Rossi, “Directive emission from high-Q photonic crystal cavities through band folding,” Phys. Rev. B79(4), 041101(R) (2009). [CrossRef]
  21. E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, T. Tanabe, and T. Watanabe, “Ultra-high-Q photonic crystal nanocavities realized by the local width modulation of a line defect,” Appl. Phys. Lett.88(4), 041112 (2006). [CrossRef]
  22. T. Yamamoto, M. Notomi, H. Taniyama, E. Kuramochi, Y. Yoshikawa, Y. Torii, and T. Kuga, “Design of a high-Q air-slot cavity based on a width-modulated line-defect in a photonic crystal slab,” Opt. Express16(18), 13809–13817 (2008). [CrossRef] [PubMed]
  23. V. R. Almeida, Q. Xu, C. A. Barrios, and M. Lipson, “Guiding and confining light in void nanostructure,” Opt. Lett.29(11), 1209–1211 (2004). [CrossRef] [PubMed]
  24. Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature425(6961), 944–947 (2003). [CrossRef] [PubMed]
  25. M. Narimatsu, S. Kita, H. Abe, and T. Baba, “Enhancement of vertical emission in photonic crystal nanolasers,” Appl. Phys. Lett.100(12), 121117 (2012). [CrossRef]
  26. M. Nomura, N. Kumagai, S. Iwamoto, Y. Ota, and Y. Arakawa, “Laser oscillation in a strongly coupled single quantum dot-nanocavity system,” Nat. Phys.6(4), 279–283 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited