OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 19 — Sep. 23, 2013
  • pp: 22012–22022

Full-vectorial whispering-gallery-mode cavity analysis

Xuan Du, Serge Vincent, and Tao Lu  »View Author Affiliations


Optics Express, Vol. 21, Issue 19, pp. 22012-22022 (2013)
http://dx.doi.org/10.1364/OE.21.022012


View Full Text Article

Enhanced HTML    Acrobat PDF (919 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a full-vectorial three-dimensional whispering-gallery-mode microcavity analysis technique. With this technique, optical properties such as resonance wavelength, quality factor, and electromagnetic field distribution of a microcavity in the presence of individual nanoparticle adsorption can be simulated with high accuracy, even in the presence of field distortion from plasmon effects at a wavelength close to plasmon resonance. This formulation is applicable to a wide variety of whispering-gallery related problems, such as waveguide to cavity coupling and full wave propagation analysis of a general whispering-gallery-mode microcavity where axisymmetry along the azimuthal direction is not required.

© 2013 OSA

OCIS Codes
(040.1880) Detectors : Detection
(230.3990) Optical devices : Micro-optical devices
(230.5750) Optical devices : Resonators

ToC Category:
Optical Devices

History
Original Manuscript: July 23, 2013
Revised Manuscript: August 28, 2013
Manuscript Accepted: August 29, 2013
Published: September 11, 2013

Citation
Xuan Du, Serge Vincent, and Tao Lu, "Full-vectorial whispering-gallery-mode cavity analysis," Opt. Express 21, 22012-22022 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-19-22012


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. K. Vahala, “Optical microcavities,” Nature424, 839–846 (2003). [CrossRef] [PubMed]
  2. D. Armani, T. Kippenberg, S. Spillane, and K. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature421, 925–928 (2003). [CrossRef] [PubMed]
  3. S. I. Shopova, R. Rajmangal, Y. Nishida, and S. Arnold, “Ultrasensitive nanoparticle detection using a portable whispering gallery mode biosensor driven by a periodically poled lithium-niobate frequency doubled distributed feedback laser,” Rev. Sci. Instrum.81, 103110 (2010). [CrossRef] [PubMed]
  4. J. Dominguez-Juarez, G. Kozyreff, and J. Martorell, “Whispering gallery microresonators for second harmonic light generation from a low number of small molecules,” Nat. Commun.2, 1–8 (2010).
  5. H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, “Chemically etched ultrahigh-Q wedge-resonator on a silicon chip,” Nat. Photonics6, 369–373 (2012). [CrossRef]
  6. Y. Sun, J. Liu, G. Frye-Mason, S.-j. Ja, A. K. Thompson, and X. Fan, “Optofluidic ring resonator sensors for rapid dnt vapor detection,” Analyst134, 1386–1391 (2009). [CrossRef] [PubMed]
  7. G. Bahl, X. Fan, and T. Carmon, “Acoustic whispering-gallery modes in optomechanical shells,” New J. Phys.14, 115026 (2012). [CrossRef]
  8. M. R. Lee and P. M. Fauchet, “Nanoscale microcavity sensor for single particle detection,” Opt. Lett.32, 3284–3286 (2007). [CrossRef] [PubMed]
  9. J. R. Buck and H. J. Kimble, “Optimal sizes of dielectric microspheres for cavity QED with strong coupling,” Phys. Rev. A.67, 033806 (2003). [CrossRef]
  10. S. M. Spillane, T. J. Kippenberg, and K. J. Vahala, “Ultralow-threshold raman laser using a spherical dielectric microcavity,” Nature415, 621–623 (2002). [CrossRef] [PubMed]
  11. M. L. Gorodetsky, A. A. Savchenkov, and V. S. Ilchenko, “Ultimate Q of optical microsphere resonators,” Opt. Lett.21, 453–455 (1996). [CrossRef] [PubMed]
  12. S. Arnold, M. Khoshsima, I. Teraoka, S. Holler, and F. Vollmer, “Shift of whispering-gallery modes in microspheres by protein adsorption,” Opt. Lett.28, 272–274 (2003). [CrossRef] [PubMed]
  13. T. Lu, H. Lee, T. Chen, S. Herchak, J.-H. Kim, S. E. Fraser, R. C. Flagan, and K. Vahala, “High sensitivity nanoparticle detection using optical microcavities,” Proc. Natl. Acad. Sci. U. S. A.(2011). [CrossRef]
  14. B. Min, E. Ostby, V. Sorger, E. Ulin-Avila, L. Yang, X. Zhang, and K. Vahala, “High-Q surface plasmon polariton whispering gallery microcavity,” Nature457, 455–458 (2009). [CrossRef] [PubMed]
  15. S. I. Shopova, R. Rajmangal, S. Holler, and S. Arnold, “Plasmonic enhancement of a whispering-gallery-mode biosensor for single nanoparticle detection,” Appl. Phys. Lett.98, 243104 (2011). [CrossRef]
  16. M. Santiago-Cordoba, S. Boriskina, F. Vollmer, and M. Demirel, “Nanoparticle-based protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett.99, 073701 (2011). [CrossRef]
  17. M. A. Santiago-Cordoba, M. Cetinkaya, S. V. Boriskina, F. Vollmer, and M. C. Demirel, “Ultrasensitive detection of a protein by optical trapping in a photonic-plasmonic microcavity,” J. Biophotonics5, 629–638 (2012). [CrossRef]
  18. I. Teraoka, S. Arnold, and F. Vollmer, “Perturbation approach to resonance shifts of whispering-gallery modes in a dielectric microsphere as a probe of a surrounding medium,” J. Opt. Soc. Am. B20, 1937–1946 (2003). [CrossRef]
  19. M. R. Foreman and F. Vollmer, “Theory of resonance shifts of whispering gallery modes by arbitrary plasmonic nanoparticles,” New J. Phys.15, 083006 (2013). [CrossRef]
  20. M. Oxborrow, “Traceable 2-D finite-element simulation of the whispering-gallery modes of axisymmetric electromagnetic resonators,” IEEE Trans. Microwave Theory Tech.55, 1209–1218 (2007). [CrossRef]
  21. J. D. Swaim, J. Knittel, and W. P. Bowen, “Detection limits in whispering gallery biosensors with plasmonic enhancement,” Appl. Phys. Lett.99, 243109 (2011). [CrossRef]
  22. J. Y. Lee, X. Luo, and A. W. Poon, “Reciprocal transmissions and asymmetric modal distributions in waveguide-coupled spiral-shaped microdisk resonators,” Opt. Express15, 14650–14666 (2007). [CrossRef] [PubMed]
  23. X. Luo and A. W. Poon, “Coupled spiral-shaped microdisk resonatorswith non-evanescent asymmetric inter-cavitycoupling,” Opt. Express15, 17313–17322 (2007). [CrossRef] [PubMed]
  24. A. Massaro, V. Errico, T. Stomeo, R. Cingolani, A. Salhi, A. Passaseo, and M. De Vittorio, “3-d fem modeling and fabrication of circular photonic crystal microcavity,” J. Lightwave Technol.26, 2960–2968 (2008). [CrossRef]
  25. A. Kaplan, M. Tomes, T. Carmon, M. Kozlov, O. Cohen, G. Bartal, and H. G. L. Schwefel, “Finite element simulation of a perturbed axial-symmetric whispering-gallery mode and its use for intensity enhancement with a nanoparticle coupled to a microtoroid,” Opt. Express21, 14169–14180 (2013). [CrossRef] [PubMed]
  26. J. Wiersig, “Boundary element method for resonances in dielectric microcavities,” J. Opt. A: Pure Appl. Opt.5, 53 (2003). [CrossRef]
  27. C.-L. Zou, Y. Yang, Y.-F. Xiao, C.-H. Dong, Z.-F. Han, and G.-C. Guo, “Accurately calculating high quality factor of whispering-gallery modes with boundary element method,” J. Opt. Soc. Am. B26, 2050–2053 (2009). [CrossRef]
  28. C.-L. Zou, H. G. L. Schwefel, F.-W. Sun, Z.-F. Han, and G.-C. Guo, “Quick root searching method for resonances of dielectric optical microcavities with the boundary element method,” Opt. Express19, 15669–15678 (2011). [CrossRef] [PubMed]
  29. T. Lu and D. Yevick, “A vectorial boundary element method analysis of integrated optical waveguides,” J. Light-wave Technol.21, 1793–1807 (2003). [CrossRef]
  30. T. Lu and D. Yevick, “Boundary element analysis of dielectric waveguides,” J. Opt. Soc. Am. A:19, 1197–1206 (2002). [CrossRef]
  31. P. Bienstman and R. Baets, “Optical modelling of photonic crystals and vcsels using eigenmode expansion and perfectly matched layers,” Opt. Quantum. Electron.33, 327–341 (2001). [CrossRef]
  32. K. Jiang and W.-P. Huang, “Finite-difference-based mode-matching method for 3-d waveguide structures under semivectorial approximation,” J. Lightwave Technol.23, 4239–4248 (2005). [CrossRef]
  33. J. Mu and W.-P. Huang, “Simulation of three-dimensional waveguide discontinuities by a full-vector mode-matching method based on finite-difference schemes,” Opt. Express16, 18152–18163 (2008). [CrossRef] [PubMed]
  34. J. Zheng and M. Yu, “Rigorous mode-matching method of circular to off-center rectangular side-coupled waveguide junctions for filter applications,” IEEE Trans. Microwave Theory Tech.55, 2365–2373 (2007). [CrossRef]
  35. I. H. Malitson, “Interspecimen comparison of the refractive index of fused silica,” J. Opt. Soc. Am.55, 1205–1208 (1965). [CrossRef]
  36. G. M. Hale and M. R. Querry, “Optical constants of water in the 200-nm to 200-μm wavelength region,” Appl. Opt.12, 555–563 (1973). [CrossRef] [PubMed]
  37. X. Ma, J. Q. Lu, R. S. Brock, K. M. Jacobs, P. Yang, and X.-H. Hu, “Determination of complex refractive index of polystyrene microspheres from 370 to 1610 nm,” Phys. Med. Biol.48, 4165 (2003). [CrossRef]
  38. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B: Condens. Matter Mater. Phys.6, 4370–4379 (1972). [CrossRef]
  39. S. A. Maier, Plasmonics: Fundamentals and Applications(Berlin: Springer, 2007).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited