OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 19 — Sep. 23, 2013
  • pp: 22053–22062

Optical properties of ordered carbon nanotube arrays grown in porous anodic alumina templates

John Zuidema, Xiulin Ruan, and Timothy S. Fisher  »View Author Affiliations

Optics Express, Vol. 21, Issue 19, pp. 22053-22062 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1479 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We have synthesized ordered carbon nanotube (CNT) arrays in porous anodic alumina (PAA) matrix, and have characterized their total optical reflectance and bi-directional reflectance distribution function after each processing step of the microwave plasma chemical vapor deposition process (MPCVD). For a PAA sample without CNT growth, the reflectance shows an oscillating pattern with wavelength that agrees reasonably with a multilayer model. During the MPCVD process, heating the sample significantly reduces the reflectance by 30-40%, the plasma treatment reduces the reflectance by another 5-10%, and the CNT growth further reduces the reflectance by 2-3%. After an atomic layer deposition (ALD) process, the reflectance increases to the embedded CNT arrays. After etching and exposure of CNT tips, the reflectance almost returns to the original pattern with slightly higher reflectance. Bi-directional reflectance distribution function (BRDF) measurements show that the CNT-PAA surface is quite specular as indicated by a large lobe at the specular angle, while the secondary lobe can be attributed to surface roughness.

© 2013 OSA

OCIS Codes
(310.1860) Thin films : Deposition and fabrication
(310.6860) Thin films : Thin films, optical properties
(310.6628) Thin films : Subwavelength structures, nanostructures

ToC Category:
Thin Films

Original Manuscript: January 28, 2013
Revised Manuscript: June 26, 2013
Manuscript Accepted: August 12, 2013
Published: September 12, 2013

John Zuidema, Xiulin Ruan, and Timothy S. Fisher, "Optical properties of ordered carbon nanotube arrays grown in porous anodic alumina templates," Opt. Express 21, 22053-22062 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. Iijima, “Helical microtubules of graphitic carbon,” Nature354(6348), 56–58 (1991). [CrossRef]
  2. K. Kempa, B. Kimball, J. Rybczynski, Z. P. Huang, P. F. Wu, D. Steeves, M. Sennett, M. Giersig, D. V. G. L. N. Rao, D. L. Carnahan, D. Z. Wang, J. Y. Lao, W. Z. Li, and Z. F. Ren, “Photonic crystals based on periodic arrays of aligned carbon nanotubes,” Nano Lett.3(1), 13–18 (2003). [CrossRef]
  3. E. Lidorikis and A. C. Ferrari, “Photonics with multiwall carbon nanotube arrays,” ACS Nano3(5), 1238–1248 (2009). [CrossRef] [PubMed]
  4. K. Kempa, J. Rybczynski, Z. P. Huang, K. Gregorczyk, A. Vidan, B. Kimball, J. Carlson, G. Benham, Y. Wang, A. Herczynski, and Z. F. Ren, “Carbon nanotubes as optical antennae,” Adv. Mater.19(3), 421–426 (2007). [CrossRef]
  5. X. J. Wang, J. D. Flicker, B. J. Lee, W. J. Ready, and Z. M. Zhang, “Visible and near-infrared radiative properties of vertically aligned multi-walled carbon nanotubes,” Nanotechnology20(21), 215704 (2009). [CrossRef] [PubMed]
  6. S. Shoji, H. Suzuki, R. P. Zaccaria, Z. Sekkat, and S. Kawata, “Optical polarizer made of uniaxially aligned short single-wall carbon nanotubes embedded in a polymer film,” Phys. Rev. B77(15), 153407 (2008). [CrossRef]
  7. Z. P. Yang, L. J. Ci, J. A. Bur, S. Y. Lin, and P. M. Ajayan, “Experimental observation of an extremely dark material made by a low-density nanotube array,” Nano Lett.8(2), 446–451 (2008). [CrossRef] [PubMed]
  8. H. Bao, X. L. Ruan, and T. S. Fisher, “Optical properties of ordered vertical arrays of multi-walled carbon nanotubes from FDTD simulations,” Opt. Express18(6), 6347–6359 (2010). [CrossRef] [PubMed]
  9. F. Keller, M. S. Hunter, and D. L. Robinson, “Structural features of oxide coatings on aluminium,” J. Electrochem. Soc.100(9), 411–419 (1953). [CrossRef]
  10. M. R. Maschmann, A. D. Franklin, A. Scott, D. B. Janes, T. D. Sands, and T. S. Fisher, “Lithography-free in situ Pd contacts to templated single-walled carbon nanotubes,” Nano Lett.6(12), 2712–2717 (2006). [CrossRef] [PubMed]
  11. A. D. Franklin, D. B. Janes, J. C. Claussen, T. S. Fisher, and T. D. Sands, “Independently addressable fields of porous anodic alumina embedded in SiO2 on Si,” Appl. Phys. Lett.92(1), 013122 (2008). [CrossRef]
  12. J. D. Edwards and T. Keller, “The structure of anodic oxide coatings,” Transactions of the American Institute of Mining and Metallurgical Engineers156, 288–299 (1944).
  13. H. Masuda, F. Hasegwa, and S. Ono, “Self-ordering of cell arrangement of anodic porous alumina formed in sulfuric acid solution,” J. Electrochem. Soc.144(5), L127–L130 (1997). [CrossRef]
  14. H. Masuda, H. Yamada, M. Satoh, H. Asoh, M. Nakao, and T. Tamamura, “Highly ordered nanochannel-array architecture in anodic alumina,” Appl. Phys. Lett.71(19), 2770–2772 (1997). [CrossRef]
  15. O. Jessensky, F. Muller, and U. Gosele, “Self-organized formation of hexagonal pore arrays in anodic alumina,” Appl. Phys. Lett.72(10), 1173–1175 (1998). [CrossRef]
  16. Z. J. Sun and H. K. Kim, “Growth of ordered, single-domain, alumina nanopore arrays with holographically patterned aluminum films,” Appl. Phys. Lett.81(18), 3458–3460 (2002). [CrossRef]
  17. H. Asoh, K. Nishio, M. Nakao, A. Yokoo, T. Tamamura, and H. Masuda, “Fabrication of ideally ordered anodic porous alumina with 63 nm hole periodicity using sulfuric acid,” J. Vac. Sci. Technol. B19(2), 569–572 (2001). [CrossRef]
  18. A. P. Li, F. Muller, A. Birner, K. Nielsch, and U. Gosele, “Hexagonal pore arrays with a 50-420 nm interpore distance formed by self-organization in anodic alumina,” J. Appl. Phys.84(11), 6023–6026 (1998). [CrossRef]
  19. E. C. Walter, K. Ng, M. P. Zach, R. M. Penner, and F. Favier, “Electronic devices from electrodeposited metal nanowires,” Microelectron. Eng.61–62, 555–561 (2002). [CrossRef]
  20. S. H. Jeong, H. Y. Hwang, S. K. Hwang, and K. H. Lee, “Carbon nanotubes based on anodic aluminum oxide nano-template,” Carbon42(10), 2073–2080 (2004). [CrossRef]
  21. H. Y. Jung, J. Kim, J. Hahn, and J. S. Suh, “Well-ordered semiconducting linearly joined carbon nanotube devices at room temperature,” Chem. Phys. Lett.402(4-6), 535–538 (2005). [CrossRef]
  22. P. L. Chen, J. K. Chang, C. T. Kuo, and F. M. Pan, “Anodic aluminum oxide template assisted growth of vertically aligned carbon nanotube arrays by ECR-CVD,” Diamond Related Materials13(11-12), 1949–1953 (2004). [CrossRef]
  23. M. J. Kim, T. Y. Lee, J. H. Choi, J. B. Park, J. S. Lee, S. K. Kim, J. B. Yoo, and C. Y. Park, “Growth of carbon nanotubes with anodic aluminum oxide formed on the catalytic metal-coated Si substrate,” Diamond Related Materials12(3-7), 870–873 (2003). [CrossRef]
  24. J. S. Lee and J. S. Suh, “Uniform field emission from aligned carbon nanotubes prepared by CO disproportionation,” J. Appl. Phys.92(12), 7519–7522 (2002). [CrossRef]
  25. J. H. Yen, I. C. Leu, M. T. Wu, C. C. Lin, and M. H. Hon, “Density control for carbon nanotube arrays synthesized by ICP-CVD using AAO/Si as a nanotemplate,” Electrochem. Solid-State Lett.7(8), H29–H31 (2004). [CrossRef]
  26. M. R. Maschmann, A. D. Franklin, T. D. Sands, and T. S. Fisher, “Optimization of carbon nanotube synthesis from porous anodic Al-Fe-Al templates,” Carbon45(11), 2290–2296 (2007). [CrossRef]
  27. S. Hofmann, G. Csányi, A. C. Ferrari, M. C. Payne, and J. Robertson, “Surface diffusion: The low activation energy path for nanotube growth,” Phys. Rev. Lett.95(3), 036101 (2005). [CrossRef] [PubMed]
  28. M. R. Maschmann, A. D. Franklin, P. B. Amama, D. N. Zakharov, E. A. Stach, T. D. Sands, and T. S. Fisher, “Vertical single- and double-walled carbon nanotubes grown from modified porous anodic alumina templates,” Nanotechnology17(15), 3925–3929 (2006). [CrossRef]
  29. G. F. Zhong, T. Iwasaki, K. Honda, Y. Furukawa, I. Ohdomari, and H. Kawarada, “Very high yield growth of vertically aligned single-walled carbon nanotubes by point-arc microwave plasma CVD,” Chemical Vapor Deposition11(3), 127–130 (2005). [CrossRef]
  30. S. Fournier-Bidoz, V. Kitaev, D. Routkevitch, I. Manners, and G. A. Ozin, “Highly ordered nanosphere imprinted nanochannel alumina (NINA),” Adv. Mater.16(23-24), 2193–2196 (2004). [CrossRef]
  31. E. F. Schubert, “Refractive index and extinction coefficient of materials,” (2004), http://homepages.rpi.edu/~schubert/Educational-resources/Materials-Refractive-index-and-extinction-coefficient.pdf .
  32. J. A. Kong, Electromagnetic wave theory (Wiley, 1990).
  33. K. E. Torrance and E. M. Sparrow, “Theory for Off-Specular Reflection from Roughened Surfaces,” J. Opt. Soc. Am.57(9), 1105–1114 (1967). [CrossRef]
  34. A. D. Franklin, R. A. Sayer, T. D. Sands, D. B. Janes, and T. S. Fisher, “Vertical Carbon Nanotube Devices With Nanoscale Lengths Controlled Without Lithography,” IEEE Trans. NanoTechnol.8(4), 469–476 (2009). [CrossRef]
  35. D. Bergström, J. Powell, and A. F. H. Kaplan, “A ray-tracing analysis of the absorption of light by smooth and rough metal surfaces,” J. Appl. Phys.101(11), 113504 (2007). [CrossRef]
  36. A. H. Wang, P. F. Hsu, and J. J. Cai, “Modeling bidirectional reflection distribution function of microscale random rough surfaces,” Journal of Central South University of Technology17(2), 228–234 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited