OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 19 — Sep. 23, 2013
  • pp: 22076–22089

Broadband telecom transparency of semiconductor-coated metal nanowires: more transparent than glass

R. Paniagua-Domínguez, D. R. Abujetas, L. S. Froufe-Pérez, J. J. Sáenz, and J. A. Sánchez-Gil  »View Author Affiliations


Optics Express, Vol. 21, Issue 19, pp. 22076-22089 (2013)
http://dx.doi.org/10.1364/OE.21.022076


View Full Text Article

Enhanced HTML    Acrobat PDF (2764 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Metallic nanowires (NW) coated with a high permittivity dielectric are proposed as means to strongly reduce the light scattering of the conducting NW, rendering them transparent at infrared wavelengths of interest in telecommunications. Based on a simple, universal law derived from electrostatics arguments, we find appropriate parameters to reduce the scattering efficiency of hybrid metal-dielectric NW by up to three orders of magnitude as compared with the scattering efficiency of the homogeneous metallic NW. We show that metal@dielectric structures are much more robust against fabrication imperfections than analogous dielectric@metal ones. The bandwidth of the transparent region entirely covers the near IR telecommunications range. Although this effect is optimum at normal incidence and for a given polarization, rigorous theoretical and numerical calculations reveal that transparency is robust against changes in polarization and angle of incidence, and also holds for relatively dense periodic or random arrangements. A wealth of applications based on metal-NWs may benefit from such invisibility.

© 2013 OSA

OCIS Codes
(240.3695) Optics at surfaces : Linear and nonlinear light scattering from surfaces
(250.5403) Optoelectronics : Plasmonics
(230.3205) Optical devices : Invisibility cloaks

ToC Category:
Optics at Surfaces

History
Original Manuscript: April 30, 2013
Revised Manuscript: June 18, 2013
Manuscript Accepted: June 19, 2013
Published: September 12, 2013

Citation
R. Paniagua-Domínguez, D. R. Abujetas, L. S. Froufe-Pérez, J. J. Sáenz, and J. A. Sánchez-Gil, "Broadband telecom transparency of semiconductor-coated metal nanowires: more transparent than glass," Opt. Express 21, 22076-22089 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-19-22076


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P.-Y. Chen, J. Soric, and A. Alù, “Invisibility and cloaking based on scattering cancellation,” Adv. Mater.24, OP281–OP304 (2012). [CrossRef] [PubMed]
  2. F. Gömöry, M. Solovyov, J. Ŝouc, C. Navau, J. Prat-Camps, and A. Sánchez, “Experimental realization of a magnetic cloak,” Science335, 1466–1468 (2012). [CrossRef] [PubMed]
  3. P. Fan, U. K. Chettiar, L. Cao, F. Afshinmanesh, N. Engheta, and M. L. Brongersma, “An invisible metal-semiconductor photodetector,” Nat. Photonics6, 380–385 (2012). [CrossRef]
  4. A. García-Etxarri, R. Gómez-Medina, L. S. Froufe-Pérez, C. López, L. Chantada, F. Scheffold, J. Aizpurua, M. Nieto-Vesperinas, and J. J. Sáenz, “Strong magnetic response of submicron silicon particles in the infrared,” Opt. Express19, 4815–4826 (2011). [CrossRef] [PubMed]
  5. Q. Zhao, J. Zhou, F. Zhang, and D. Lippens, “Mie resonance-based dielectric metamaterials,” Mater. Today12, 60–69 (2009). [CrossRef]
  6. J. Geffrin, B. García-Cámara, R. Gómez-Medina, P. Albella, L. Froufe-Pérez, C. Eyraud, A. Litman, R. Vaillon, F. González, M. Nieto-Vesperinas, J. Sáenz, and F. Moreno, “Magnetic and electric coherence in forward-and backscattered electromagnetic waves by a single dielectric subwavelength sphere,” Nat. Commun.3, 1171 (2012). [CrossRef]
  7. S. Person, M. Jain, Z. Lapin, J. J. Sáenz, G. Wicks, and L. Novotny, “Demonstration of zero optical backscattering from single nanoparticles,” Nano Lett.13, 1806–1809 (2013). [PubMed]
  8. Y. H. Fu, A. I. Kuznetsov, A. E. Miroshnichenko, Y. F. Yu, and B. Lukýanchuk, “Directional visible light scattering by silicon nanoparticles,” Nat. Commun.4, 1527 (2013). [CrossRef] [PubMed]
  9. E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Chem. Phys. Lett.302, 419–422 (2003).
  10. C. S. Levin, C. Hofmann, T. A. Ali, A. T. Kelly, E. Morosan, P. Nordlander, K. H. Whitmire, and N. J. Halas, “Magnetic-plasmonic core-shell nanoparticles,” ACS Nano3, 1379–1388 (2009). [CrossRef] [PubMed]
  11. R. Paniagua-Domínguez, F. López-Tejeira, R. Marqués, and J. A. Sánchez-Gil, “Metallo-dielectric core-shell nanospheres as building blocks for optical three-dimensional isotropic negative-index metamaterials,” New J. Phys.13, 123017 (2011). [CrossRef]
  12. W. Liu, A. E. Miroshnichenko, D. N. Neshev, and Y. S. Kivshar, “Broadband unidirectional scattering by magneto-electric core-shell nanoparticles,” ACS Nano6, 5489–5497 (2012). [CrossRef] [PubMed]
  13. S. Oldenburg, R. Averitt, S. Westcott, and N. Halas, “Nanoengineering of optical resonances,” Chem. Phys. Lett.288, 243–247 (1998). [CrossRef]
  14. M. Kerker, “Invisible bodies,” J. Opt. Soc. Am.65, 376–379 (1975). [CrossRef]
  15. H. Chew and M. Kerker, “Abnormally low electromagnetic scattering cross sections,” J. Opt. Soc. Am.5, 445–449 (1976). [CrossRef]
  16. A. Alù and N. Engheta, “Achieving transparency with plasmonic and metamaterial coatings,” Phys. Rev. E72, 016623 (2005). [CrossRef]
  17. A. Alù and N. Engheta, “Erratum: Achieving transparency with plasmonic and metamaterial coatings [Phys. Rev. E, 72, 016623 (2005)],” Phys. Rev. E73, 019906(E) (2006). [CrossRef]
  18. Y. Li, F. Qian, J. Xiang, and C. M. Lieber, “Nanowire electronic and optoelectronic devices,” Mater. Today9, 18–27 (2006). [CrossRef]
  19. G. Grzela, R. Paniagua-Domínguez, T. Barten, Y. Fontana, J. A. Sánchez-Gil, and J. G. Rivas, “Nanowire antenna emission,” Nano Lett.12, 5481–5486 (2012). [CrossRef] [PubMed]
  20. A. Tuniz, B. T. Kuhlmey, P. Y. Chen, and S. C. Fleming, “Weaving the invisible thread: design of an optically invisible metamaterial fibre.” Opt. Express18, 18095–18105 (2010). [CrossRef] [PubMed]
  21. A. Alù, D. Rainwater, and A. Kerkhoff, “Plasmonic cloaking of cylinders: finite length, oblique illumination and cross-polarization coupling,” New J. Phys.12, 103028 (2010). [CrossRef]
  22. P. Mundru, V. Pappakrishnan, and D. Genov, “Material- and geometry-independent multishell cloaking device,” Phys. Rev. B85, 045402 (2012). [CrossRef]
  23. Y. Huang, Y. Feng, and T. Jiang, “Electromagnetic cloaking by layered structure of homogeneous isotropic materials,” Opt. Express15, 11133–11141 (2007). [CrossRef] [PubMed]
  24. A. Mirzaei, I. V. Shadrivov, A. E. Miroshnichenko, and Y. S. Kivshar, “Cloaking and enhanced scattering of core-shell plasmonic nanowires,” Opt. Express21, 10454–10459 (2013). [CrossRef] [PubMed]
  25. Y. Urzhumov, N. Landy, T. Driscoll, D. Basov, and D. R. Smith, “Thin low-loss dielectric coatings for free-space cloaking,” Opt. Lett.38, 1606–1608 (2013). [CrossRef]
  26. R. Paniagua-Domínguez, D. R. Abujetas, and J. A. Sánchez-Gil, “Ultra low-loss, isotropic optical negative-index metamaterial based on hybrid metal-semiconductor nanowires,” Sci. Rep.3, 1507 (2013). [CrossRef]
  27. S. Lal, J. H. Hafner, N. J. Halas, S. Link, and P. Nordlander, “Noble metal nanowires: from plasmon waveguides to passive and active devices,” Acc. Chem. Res45, 1887–1895 (2012). [CrossRef] [PubMed]
  28. A. Kim, Y. Won, K. Woo, C.-H. Kim, and J. Moon, “Highly transparent low resistance ZnO/Ag nanowire/ZnO composite electrode for thin film solar cells,” ACS Nano7, 1081–1091 (2013). [CrossRef] [PubMed]
  29. K. Ellmer, “Past achievements and future challenges in the development of optically transparent electrodes,” Nat. Photonics6, 809–817 (2012). [CrossRef]
  30. S.-K. Kim, R. W. Day, J. F. Cahoon, T. J. Kempa, K.-D. Song, H.-G. Park, and C. M. Lieber, “Tuning light absorption in core/shell silicon nanowire photovoltaic devices through morphological design,” Nano Lett.12, 4971–4976 (2012). [CrossRef] [PubMed]
  31. A. Alù and N. Engheta, “Cloaking a sensor,” Phys. Rev. Lett.102, 233901 (2009). [CrossRef] [PubMed]
  32. R. Paschotta, Encyclopedia of laser physics and technology (Wiley, 2008).
  33. S. Albaladejo, R. Gómez-Medina, L. S. Froufe-Pérez, H. Marinchio, R. Carminati, J. F. Torrado, G. Armelles, A. García-Martín, and J. J. Sáenz, “Radiative corrections to the polarizability tensor of an electrically small anisotropic dielectric particle.” Opt. Express18, 3556–3567 (2010). [CrossRef] [PubMed]
  34. C. F. Bohren and D. R. Huffman, Absorption and scattering of light by small particles (John Wiley & Sons, 1998). [CrossRef]
  35. G. A. Shah, “Scattering of plane electromagnetic waves by infinite concentric circular cylinders at oblique incidence,” Mon. Not. R. Astron. Soc148, 93–102 (1970).
  36. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6, 4370–4379 (1972). [CrossRef]
  37. M. Kerker and E. Matijevic, “Scattering of electromagnetic waves from concentric infinite cylinders,” J. Opt. Soc. Am.51, 506–508 (1961). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

Supplementary Material


» Media 1: MPG (214 KB)     
» Media 2: MPG (238 KB)     
» Media 3: MPG (206 KB)     
» Media 4: MPG (268 KB)     
» Media 5: MPG (266 KB)     
» Media 6: MPG (252 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited