OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 19 — Sep. 23, 2013
  • pp: 22153–22165

Autocorrelation function of channel matrix in few-mode fibers with strong mode coupling

Qian Hu and William Shieh  »View Author Affiliations


Optics Express, Vol. 21, Issue 19, pp. 22153-22165 (2013)
http://dx.doi.org/10.1364/OE.21.022153


View Full Text Article

Enhanced HTML    Acrobat PDF (920 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Channel matrix plays a critical role in receiver design and ultimate channel performance. To fully describe the channel matrix of a few-mode fiber (FMF), we choose the generalized high-dimensional Gell-Mann matrices, an equivalent of the 2-dimensional Pauli matrices used for a single-mode fiber (SMF), as the basis for the channel matrix decomposition. The frequency dependence of channel matrix can be studied in terms of the autocorrelation function (ACF), showing how fast channel changes in frequency domain. In this paper, we derive a canonical stochastic differential equation (SDE) for the FMF channel matrix in the regime of strong coupling. With the SDE, we develop an analytical form for the ACF of FMF channel matrix, from which the channel correlation bandwidth is obtained.

© 2013 OSA

OCIS Codes
(060.1660) Fiber optics and optical communications : Coherent communications
(060.2330) Fiber optics and optical communications : Fiber optics communications

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: June 18, 2013
Revised Manuscript: August 9, 2013
Manuscript Accepted: August 20, 2013
Published: September 12, 2013

Citation
Qian Hu and William Shieh, "Autocorrelation function of channel matrix in few-mode fibers with strong mode coupling," Opt. Express 21, 22153-22165 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-19-22153


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Li, A. A. Amin, X. Chen, and W. Shieh, “Reception of mode and polarization multiplexed 107-Gb/s CO-OFDM signal over a two-mode fiber,” OFC/NFOEC2011, PDPB8 (2011).
  2. R. Ryf, S. Randel, A. H. Gnauck, C. Bolle, A. Sierra, S. Mumtaz, M. Esmaeelpour, E. C. Burrows, R. Essiambre, P. J. Winzer, D. W. Peckham, A. H. McCurdy, and R. Lingle, “Mode-division multiplexing over 96 km of few-mode fiber using coherent 6x6 MIMO processing,” J. Lightwave Technol.30(4), 521–531 (2012). [CrossRef]
  3. N. Bai, E. Ip, Y. K. Huang, E. Mateo, F. Yaman, M. J. Li, S. Bickham, S. Ten, J. Liñares, C. Montero, V. Moreno, X. Prieto, V. Tse, K. Man Chung, A. P. T. Lau, H. Y. Tam, C. Lu, Y. Luo, G. D. Peng, G. Li, and T. Wang, “Mode-division multiplexed transmission with inline few-mode fiber amplifier,” Opt. Express20(3), 2668–2680 (2012). [CrossRef] [PubMed]
  4. R. Olshansky, “Mode-coupling effects in graded-index optical fibers,” Appl. Opt.14(4), 935–945 (1975). [CrossRef] [PubMed]
  5. K.-P. Ho and J. M. Kahn, “Frequency diversity in mode-division multiplexing systems,” J. Lightwave Technol.29(24), 3719–3726 (2011). [CrossRef]
  6. P. K. A. Wai and C. R. Menyuk, “Polarization mode dispersion, decorrelation, and diffusion in optical fiber with randomly varying birefringence,” J. Lightwave Technol.14(2), 148–157 (1996). [CrossRef]
  7. G. J. Foschini and C. D. Poole, “Statistical theory of polarization dispersion in single mode fibers,” J. Lightwave Technol.9(11), 1439–1456 (1991). [CrossRef]
  8. A. Bononi and A. Vannucci, “Statistics of the Jones matrix of fibers affected by polarization mode dispersion,” Opt. Lett.26(10), 675–677 (2001). [CrossRef] [PubMed]
  9. A. Vannucci and A. Bononi, “Statistical characterization of the Jones matrix of long fibers affected by polarization mode dispersion (PMD),” J. Lightwave Technol.20(5), 783–793 (2002). [CrossRef]
  10. J. P. Gordon and H. Kogelnik, “PMD fundamentals: polarization mode dispersion in optical fibers,” Proc. Natl. Acad. Sci. U.S.A.97(9), 4541–4550 (2000). [CrossRef] [PubMed]
  11. C. Antonelli, A. Mecozzi, M. Shtaif, and P. J. Winzer, “Stokes-space analysis of modal dispersion in fiber with multiple mode transmission,” Opt. Express20, 11718–11733 (2012).
  12. C. Antonelli, A. Mecozzi, and M. Shtaif, “Modeling of linear and nonlinear coupling in multiple-mode fiber optic transmission with MIMO signal processing,” Signals, Systems and Computers (Asilomar, 2012), 645–649.
  13. K.-P. Ho and J. M. Kahn, “Statistics of group delays in multimode fiber with strong mode coupling,” J. Lightwave Technol.29(21), 3119–3128 (2011). [CrossRef]
  14. A. Li, A. Al Amin, X. Chen, and W. Shieh, “Transmission of 107-Gb/s mode and polarization multiplexed CO-OFDM signal over a two-mode fiber,” Opt. Express19(9), 8808–8814 (2011). [CrossRef] [PubMed]
  15. A. Al Amin, A. Li, S. Chen, X. Chen, G. Gao, and W. Shieh, “Dual-LP11 mode 4×4 MIMO-OFDM transmission over a two-mode fiber,” Opt. Express19(17), 16672–16679 (2011). [CrossRef] [PubMed]
  16. M. Hsieh and C. Wei, “Channel estimation for OFDM systems based in comb-type pilot arrangement in frequency selective fading channels,” IEEE Trans. Consum. Electron.44(1), 217–225 (1998). [CrossRef]
  17. S. Weigert, “Baker-Campbell-Hausdorff relation for special unitary groups SU(N),” J. Phys. Math. Gen.30(24), 8739–8749 (1997). [CrossRef]
  18. M. Gell-Man, “Symmetries of Baryons and Mesons,” Phys. Rev.125(3), 1067–1084 (1962). [CrossRef]
  19. L. Arnold, Stochastic Differential Equations Theory and Application (Wiley 1974).
  20. T. C. Gard, Introduction to Stochastic Differential Equations (Marcel Dekker, INC. 1988).
  21. B. Øksendal, Stochastic Differential Equation (Springer-Verlag Berlin Heidelberg 1989).
  22. D. C. Cox and R. Leck, “Correlation bandwidth and delay spread multipath propagation statistics for 91-MHz urban mobile radio channels,” IEEE Trans. Commun.23(11), 1271–1280 (1975). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited