OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 19 — Sep. 23, 2013
  • pp: 22194–22205

Swept-frequency feedback interferometry using terahertz frequency QCLs: a method for imaging and materials analysis

Aleksandar D. Rakić, Thomas Taimre, Karl Bertling, Yah Leng Lim, Paul Dean, Dragan Indjin, Zoran Ikonić, Paul Harrison, Alexander Valavanis, Suraj P. Khanna, Mohammad Lachab, Stephen J. Wilson, Edmund H. Linfield, and A. Giles Davies  »View Author Affiliations


Optics Express, Vol. 21, Issue 19, pp. 22194-22205 (2013)
http://dx.doi.org/10.1364/OE.21.022194


View Full Text Article

Enhanced HTML    Acrobat PDF (1717 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The terahertz (THz) frequency quantum cascade laser (QCL) is a compact source of high-power radiation with a narrow intrinsic linewidth. As such, THz QCLs are extremely promising sources for applications including high-resolution spectroscopy, heterodyne detection, and coherent imaging. We exploit the remarkable phase-stability of THz QCLs to create a coherent swept-frequency delayed self-homodyning method for both imaging and materials analysis, using laser feedback interferometry. Using our scheme we obtain amplitude-like and phase-like images with minimal signal processing. We determine the physical relationship between the operating parameters of the laser under feedback and the complex refractive index of the target and demonstrate that this coherent detection method enables extraction of complex refractive indices with high accuracy. This establishes an ultimately compact and easy-to-implement THz imaging and materials analysis system, in which the local oscillator, mixer, and detector are all combined into a single laser.

© 2013 OSA

OCIS Codes
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(120.4530) Instrumentation, measurement, and metrology : Optical constants
(140.5965) Lasers and laser optics : Semiconductor lasers, quantum cascade
(110.6795) Imaging systems : Terahertz imaging

ToC Category:
Instrumentation, Measurement, and Metrology

History
Original Manuscript: July 18, 2013
Revised Manuscript: September 4, 2013
Manuscript Accepted: September 4, 2013
Published: September 12, 2013

Citation
Aleksandar D. Rakić, Thomas Taimre, Karl Bertling, Yah Leng Lim, Paul Dean, Dragan Indjin, Zoran Ikonić, Paul Harrison, Alexander Valavanis, Suraj P. Khanna, Mohammad Lachab, Stephen J. Wilson, Edmund H. Linfield, and A. Giles Davies, "Swept-frequency feedback interferometry using terahertz frequency QCLs: a method for imaging and materials analysis," Opt. Express 21, 22194-22205 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-19-22194


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. B. Hu and M. Nuss, “Imaging with terahertz waves,” Opt. Lett.20, 1716–1718 (1995). [CrossRef] [PubMed]
  2. W. L. Chan, J. Deibel, and D. M. Mittleman, “Imaging with terahertz radiation,” Rep. Prog. Phys.70, 1325 (2007). [CrossRef]
  3. A. G. Davies, A. D. Burnett, W. Fan, E. H. Linfield, and J. E. Cunningham, “Terahertz spectroscopy of explosives and drugs,” Mater. Today11, 18–26 (2008). [CrossRef]
  4. P. U. Jepsen, D. G. Cooke, and M. Koch, “Terahertz spectroscopy and imaging — Modern techniques and applications,” Laser Photon. Rev.5, 124–166 (2011). [CrossRef]
  5. M. Tonouchi, “Cutting-edge terahertz technology,” Nature Photon.1, 97–105 (2007). [CrossRef]
  6. H. Shimosato, M. Ashida, T. Itoh, S. Saito, and K. Sakai, “Ultrabroadband detection of terahertz radiation from 0.1 to 100 THz with photoconductive antenna,” in “Ultrafast Optics V,” (Springer, 2007), pp. 317–323. [CrossRef]
  7. P. Han, M. Tani, M. Usami, S. Kono, R. Kersting, and X.-C. Zhang, “A direct comparison between terahertz time-domain spectroscopy and far-infrared fourier transform spectroscopy,” J. Appl. Phys.89, 2357–2359 (2001). [CrossRef]
  8. M. Naftaly, “Metrology issues and solutions in THz time-domain spectroscopy: Noise, errors, calibration,” IEEE Sens. J.13, 8–17 (2013). [CrossRef]
  9. W. H. Fan, A. Burnett, P. C. Upadhya, J. Cunningham, E. H. Linfield, and A. G. Davies, “Far-infrared spectroscopic characterization of explosives for security applications using broadband terahertz time-domain spectroscopy,” Appl. Spectrosc.61, 638–643 (2007). [CrossRef] [PubMed]
  10. X. Lu, N. Karpowicz, Y. Chen, and X.-C. Zhang, “Systematic study of broadband terahertz gas sensor,” Appl. Phys. Lett.93, 261106 (2008). [CrossRef]
  11. X. Zheng, C. V. McLaughlin, P. Cunningham, and L. M. Hayden, “Organic broadband terahertz sources and sensors,” J. Nanoelectron. Optoelectron.2, 58–76 (2007). [CrossRef]
  12. C. V. McLaughlin, L. M. Hayden, B. Polishak, S. Huang, J. Luo, T.-D. Kim, and A. K.-Y. Jen, “Wideband 15 THz response using organic electro-optic polymer emitter-sensor pairs at telecommunication wavelengths,” Appl. Phys. Lett.92, 151107 (2008). [CrossRef]
  13. L. Duvillaret, F. Garet, and J.-L. Coutaz, “A reliable method for extraction of material parameters in terahertz time-domain spectroscopy,” IEEE J. Sel. Top. Quantum Electron.2, 739–746 (1996). [CrossRef]
  14. N. Laman, S. S. Harsha, D. Grischkowsky, and J. S. Melinger, “7 GHz resolution waveguide THz spectroscopy of explosives related solids showing new features,” Opt. Express16, 4094–4105 (2008). [CrossRef] [PubMed]
  15. R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature417, 156–159 (2002). [CrossRef] [PubMed]
  16. M. S. Vitiello, L. Consolino, S. Bartalini, A. Taschin, A. Tredicucci, M. Inguscio, and P. De Natale, “Quantum-limited frequency fluctuations in a terahertz laser,” Nat. Photonics6, 525–528 (2012). [CrossRef]
  17. J. Darmo, V. Tamosiunas, G. Fasching, J. Kröll, K. Unterrainer, M. Beck, M. Giovannini, J. Faist, C. Kremser, and P. Debbage, “Imaging with a Terahertz quantum cascade laser,” Opt. Express12, 1879–1884 (2004). [CrossRef] [PubMed]
  18. A. W. Lee, Q. Qin, S. Kumar, B. S. Williams, Q. Hu, and J. L. Reno, “Real-time terahertz imaging over a standoff distance (≫25 meters),” Appl. Phys. Lett.89, 141125–141125 (2006). [CrossRef]
  19. P. Dean, M. U. Shaukat, S. P. Khanna, S. Chakraborty, M. Lachab, A. Burnett, G. Davies, and E. H. Linfield, “Absorption-sensitive diffuse reflection imaging of concealed powders using a terahertz quantum cascade laser,” Opt. Express16, 5997–6007 (2008). [CrossRef] [PubMed]
  20. P. Dean, N. K. Saat, S. P. Khanna, M. Salih, A. Burnett, J. Cunningham, E. H. Linfield, and A. G. Davies, “Dual-frequency imaging using an electrically tunable terahertz quantum cascade laser,” Opt. Express17, 20631–20641 (2009). [CrossRef] [PubMed]
  21. H.-W. Hubers, S. Pavlov, H. Richter, A. Semenov, L. Mahler, A. Tredicucci, H. Beere, and D. Ritchie, “High-resolution gas phase spectroscopy with a distributed feedback terahertz quantum cascade laser,” Appl. Phys. Lett.89, 061115 (2006). [CrossRef]
  22. A. A. Danylov, T. M. Goyette, J. Waldman, M. J. Coulombe, A. J. Gatesman, R. H. Giles, X. Qian, N. Chandrayan, S. Vangala, K. Termkoa, W. D. Goodhue, and W. E. Nixon, “Terahertz inverse synthetic aperture radar (ISAR) imaging with a quantum cascade laser transmitter,” Opt. Express18, 16264–16272 (2010). [CrossRef] [PubMed]
  23. M. Ravaro, V. Jagtap, G. Santarelli, C. Sirtori, L. Li, S. Khanna, E. Linfield, and S. Barbieri, “Continuous-wave coherent imaging with terahertz quantum cascade lasers using electro-optic harmonic sampling,” Appl. Phys. Lett.102, 091107 (2013). [CrossRef]
  24. S. Barbieri, P. Gellie, G. Santarelli, L. Ding, W. Maineult, C. Sirtori, R. Colombelli, H. Beere, and D. Ritchie, “Phase-locking of a 2.7-THz quantum cascade laser to a mode-locked erbium-doped fibre laser,” Nature Photon.4, 636–640 (2010). [CrossRef]
  25. M. Ravaro, S. Barbieri, G. Santarelli, V. Jagtap, C. Manquest, C. Sirtori, S. Khanna, and E. Linfield, “Measurement of the intrinsic linewidth of terahertz quantum cascade lasers using a near-infrared frequency comb,” Opt. Express20, 25654–25661 (2012). [CrossRef] [PubMed]
  26. R. P. Green, J. H. Xu, L. Mahler, A. Tredicucci, F. Beltram, G. Giuliani, H. E. Beere, and D. A. Ritchie, “Linewidth enhancement factor of terahertz quantum cascade lasers,” Appl. Phys. Lett.92, 071106 (2008). [CrossRef]
  27. Y. L. Lim, P. Dean, M. Nikolić, R. Kliese, S. P. Khanna, M. Lachab, A. Valavanis, D. Indjin, Z. Ikonić, P. Harrison, E. H. Linfield, A. G. Davies, S. J. Wilson, and A. D. Rakić, “Demonstration of a self-mixing displacement sensor based on terahertz quantum cascade lasers,” Appl. Phys. Lett.99, 081108 (2011). [CrossRef]
  28. P. Dean, Y. L. Lim, A. Valavanis, R. Kliese, M. Nikolić, S. P. Khanna, M. Lachab, D. Indjin, Z. Ikonić, P. Harrison, A. D. Rakić, E. H. Linfield, and A. G. Davies, “Terahertz imaging through self-mixing in a quantum cascade laser,” Opt. Lett.36, 2587–2589 (2011). [CrossRef] [PubMed]
  29. S. Donati, “Developing self-mixing interferometry for instrumentation and measurements,” Laser Photon. Rev.6, 393–417 (2012). [CrossRef]
  30. T. Bosch, C. Bès, L. Scalise, and G. Plantier, Encyclopedia of Sensors (American Scientific Publishers, 2006), chap. Optical feedback interferometry, pp. 1–20.
  31. G. Giuliani, M. Norgia, S. Donati, and T. Bosch, “Laser diode self-mixing technique for sensing applications,” J. Opt. A: Pure Appl. Opt.4, S283–S294 (2002). [CrossRef]
  32. G. Giuliani and S. Donati, Unlocking Dynamical Diversity: Optical Feedback Effects on Semiconductor Lasers (John Wiley & Sons, 2005), chap. 7: Laser Interferometry.
  33. G. Scalari, L. Ajili, J. Faist, H. Beere, E. Linfield, D. Ritchie, and G. Davies, “Far-infrared (λ= 87 μm) bound-to-continuum quantum-cascade lasers operating up to 90 K,” Appl. Phys. Lett.82, 3165–3167 (2003). [CrossRef]
  34. D. Indjin, P. Harrison, R. Kelsall, and Z. Ikonić, “Mechanisms of temperature performance degradation in terahertz quantum-cascade lasers,” Appl. Phys. Lett.82, 1347–1349 (2003). [CrossRef]
  35. P. Gellie, S. Barbieri, J.-F. Lampin, P. Filloux, C. Manquest, C. Sirtori, I. Sagnes, S. P. Khanna, E. H. Linfield, A. G. Davies, H. Beere, and D. Ritchie, “Injection-locking of terahertz quantum cascade lasers up to 35 GHz using RF amplitude modulation,” Opt. Express18, 20799–20816 (2010). [CrossRef] [PubMed]
  36. S. Barbieri, M. Ravaro, P. Gellie, G. Santarelli, C. Manquest, C. Sirtori, S. P. Khanna, E. H. Linfield, and A. G. Davies, “Coherent sampling of active mode-locked terahertz quantum cascade lasers and frequency synthesis,” Nature Photon.5, 306–313 (2011). [CrossRef]
  37. K. Petermann, Laser diode modulation and noise, 3rd ed. (Springer, 1991).
  38. R. Lang and K. Kobayashi, “External optical feedback effects on semiconductor injection laser properties,” IEEE J. Quantum Electron.16, 347–355 (1980). [CrossRef]
  39. P. Spencer, P. Rees, and I. Pierce, Unlocking Dynamical Diversity: Optical Feedback Effects on Semiconductor Lasers (John Wiley & Sons, 2005), chap. 2: Theoretical Analysis.
  40. S. Donati, “Responsivity and noise of self-mixing photodetection schemes,” IEEE J. Quantum Electron.47, 1428–1433 (2011). [CrossRef]
  41. G. Plantier, C. Bès, and T. Bosch, “Behavioral model of a self-mixing laser diode sensor,” IEEE J. Quantum Electron.41, 1157–1167 (2005). [CrossRef]
  42. Y. L. Lim, K. Bertling, P. Rio, J. Tucker, and A. Rakic, “Displacement and distance measurement using the change in junction voltage across a laser diode due to the self-mixing effect,” in Photonics: Design, Technology, and Packaging II, D. Abbott, Y. S. Kivshar, H. H. Rubinsztein-Dunlop, and S. Fan, eds., Proc. SPIE 6038, 60381O-1 (2006).
  43. G. Bryant, Principles of microwave measurements(P. Peregrinus Ltd. on behalf of the Institution of Electrical Engineers, 1993). [CrossRef]
  44. P. Cunningham, N. Valdes, F. Vallejo, L. Hayden, B. Polishak, X. Zhou, J. Luo, A. Jen, J. Williams, and R. Twieg, “Broadband terahertz characterization of the refractive index and absorption of some important polymeric and organic electro-optic materials,” J. Appl. Phys.109, 043505–043505 (2011). [CrossRef]
  45. Y.-S. Jin, G.-J. Kim, and S.-G. Jeon, “Terahertz dielectric properties of polymers,” J. Korean Phys. Soc.49, 513–517 (2006).
  46. S. Wietzke, C. Jansen, M. Reuter, T. Jung, D. Kraft, S. Chatterjee, B. Fischer, and M. Koch, “Terahertz spectroscopy on polymers: A review of morphological studies,” J. Mol. Struct.1006, 41–51 (2011). [CrossRef]
  47. A. W. M. Lee, T.-Y. Kao, D. Burghoff, Q. Hu, and J. L. Reno, “Terahertz tomography using quantum-cascade lasers,” Opt. Lett.37, 217–219 (2012). [CrossRef] [PubMed]
  48. S. Barbieri, J. Alton, H. E. Beere, J. Fowler, E. H. Linfield, and D. A. Ritchie, “2.9 THz quantum cascade lasers operating up to 70 K in continuous wave,” Appl. Phys. Lett.85, 1674 (2004). [CrossRef]
  49. S. P. Khanna, S. Chakraborty, M. Lachab, N. M. Hinchcliffe, E. H. Linfield, and A. G. Davies, “The growth and measurement of terahertz quantum cascade lasers,” Physica E: Low Dimens. Syst. Nanostruct.40, 1859–1861 (2008). [CrossRef]
  50. A. D. Rakić, “Algorithm for the determination of intrinsic optical constants of metal films: application to aluminum,” Appl. Opt.34, 4755–4767 (1995). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited