OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 19 — Sep. 23, 2013
  • pp: 22263–22268

Tri-wavelength laser generation based on neodymium doped disordered crystal waveguide

Yang Tan, Feng Chen, Javier Rodríguez Vázquez de Aldana, Haohai Yu, and Huaijin Zhang  »View Author Affiliations

Optics Express, Vol. 21, Issue 19, pp. 22263-22268 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1001 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate a tri-wavelength laser generation from a Nd-doped calcium niobium gallium garnet disordered crystal waveguide. The laser threshold obtained was 83 mW of launched pumping laser corresponding to a slope efficiency of 5.1%. According to the laser spectrum, the output light was found to be a tri-wavelength laser, with wavelengths of 1058 nm, 1060 nm and 1064 nm, respectively. The stability of the output laser was investigated, which found that the output laser was a continuous laser.

© 2013 OSA

OCIS Codes
(140.3460) Lasers and laser optics : Lasers
(160.5690) Materials : Rare-earth-doped materials
(230.7380) Optical devices : Waveguides, channeled

ToC Category:
Lasers and Laser Optics

Original Manuscript: July 22, 2013
Revised Manuscript: September 5, 2013
Manuscript Accepted: September 5, 2013
Published: September 13, 2013

Yang Tan, Feng Chen, Javier Rodríguez Vázquez de Aldana, Haohai Yu, and Huaijin Zhang, "Tri-wavelength laser generation based on neodymium doped disordered crystal waveguide," Opt. Express 21, 22263-22268 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Yu. K. Voronko, N. A. Es'kov, V. V. Osiko, A. A. Sobol', S. A. Sychev, S. N. Ushakov, and L. I. Tsymbal, “Lasing properties of neodymium-doped calcium-niobium-gallium and calcium-lithium-niobium-gallium garnets at wavelengths of 1.06 and 1.33 mum,” Quantum Electron.20, 574–576 (1993).
  2. K. Naito, A. Yokotani, T. Sasaki, T. Okuyama, M. Yamanaka, M. Nakatsuka, S. Nakai, T. Fukuda, and M. I. Timoshechkin, “Efficient laser-diode-pumped neodymium-doped calcium-niobium-gallium-garnet laser,” Appl. Opt.32(36), 7387–7390 (1993). [CrossRef] [PubMed]
  3. Q. N. Li, B. H. Feng, Z. Y. Wei, D. X. Zhang, D. H. Li, Z. G. Zhang, H. J. Zhang, and J. Y. Wang, “Continuous wave 935 nm Nd:CNGG laser at watt-level power,” Opt. Lett.33(3), 261–263 (2008). [CrossRef] [PubMed]
  4. Z. B. Shi, X. Fang, H. J. Zhang, Z. P. Wang, J. Y. Wang, H. H. Yu, Y. G. Yu, X. T. Tao, and M. H. Jiang, “Continuous-wave laser operation at 1.33 mu m of Nd:CNGG and Nd: CLNGG crystals,” Laser Phys. Lett.5(3), 177–180 (2008). [CrossRef]
  5. G. Q. Xie, D. Y. Tang, H. Luo, H. J. Zhang, H. H. Yu, J. Y. Wang, X. T. Tao, M. H. Jiang, and L. J. Qian, “Dual-wavelength synchronously mode-locked Nd:CNGG laser,” Opt. Lett.33(16), 1872–1874 (2008). [CrossRef] [PubMed]
  6. A. Agnesi, S. Dell’Acqua, A. Guandalini, G. Reali, F. Cornacchia, A. Toncelli, M. Toncelli, K. Shimamura, and T. Fukuda, “Optical spectroscopy and diode-pumped laser performance of Nd3+ in the CNGG crystal,” IEEE J. Quantum Electron.37(2), 304–313 (2001). [CrossRef]
  7. Y. Shi, Q. Li, D. Zhang, B. Feng, Z. Zhang, H. Zhang, and J. Wang, “Comparison of 885 nm pumping and 808 nm pumping in Nd:CNGG laser operating at 1061 nm and 935 nm,” Opt. Commun.283(14), 2888–2891 (2010). [CrossRef]
  8. H. Yu, H. Zhang, Z. Wang, J. Wang, Y. Yu, Z. Shi, X. Zhang, and M. Jiang, “High-power dual-wavelength laser with disordered Nd:CNGG crystals,” Opt. Lett.34(2), 151–153 (2009). [CrossRef] [PubMed]
  9. B. Zhang, S. Guo, J. He, S. Liu, J. Yang, J. Xu, and H. Huang, “Tri-wavelength laser with Nd:CLTGG crystal,” Appl. Phys. B105(4), 807–811 (2011). [CrossRef]
  10. D. Creeden, J. C. McCarthy, P. A. Ketteridge, P. G. Schunemann, T. Southward, J. J. Komiak, and E. P. Chicklis, “Compact, high average power, fiber-pumped terahertz source for active real-time imaging of concealed objects,” Opt. Express15(10), 6478–6483 (2007). [CrossRef] [PubMed]
  11. Y. Tan, Y. C. Jia, F. Chen, J. R. V. de Aldana, and D. Jaque, “Simultaneous dual-wavelength lasers at 1064 nm and 1342 nm in femtosecond-laser-written Nd:YVO4 channel waveguides,” J. Opt. Soc. Am. B28(7), 1607–1610 (2011). [CrossRef]
  12. Y. Tan, A. Rodenas, F. Chen, R. R. Thomson, A. K. Kar, D. Jaque, and Q. M. Lu, “70% slope efficiency from an ultrafast laser-written Nd:GdVO4 channel waveguide laser,” Opt. Express18(24), 24994–24999 (2010). [CrossRef] [PubMed]
  13. C. Grivas, “Optically pumped planar waveguide lasers, Part I: Fundamentals and fabrication techniques,” Prog. Quantum Electron.35(6), 159–239 (2011). [CrossRef]
  14. K. van Dalfsen, S. Aravazhi, C. Grivas, S. M. García-Blanco, and M. Pollnau, “Thulium channel waveguide laser in a monoclinic double tungstate with 70% slope efficiency,” Opt. Lett.37(5), 887–889 (2012). [CrossRef] [PubMed]
  15. T. Calmano, A. G. Paschke, J. Siebenmorgen, S. T. Fredrich-Thornton, H. Yagi, K. Petermann, and G. Huber, “Characterization of an Yb:YAG ceramic waveguide laser, fabricated by the direct femtosecond-laser writing technique,” Appl. Phys. B103(1), 1–4 (2011). [CrossRef]
  16. A. Okhrimchuk, V. Mezentsev, A. Shestakov, and I. Bennion, “Low loss depressed cladding waveguide inscribed in YAG:Nd single crystal by femtosecond laser pulses,” Opt. Express20(4), 3832–3843 (2012). [CrossRef] [PubMed]
  17. J. I. Mackenzie, “Dielectric Solid-State Plannar Waveguide Laser: A Review,” IEEE J. Sel. Top. Quantum Electron.13(3), 626–637 (2007). [CrossRef]
  18. L. L. Wang and Y. G. Yu, “Characterization of laser waveguides in Nd:CNGG crystals formed by low fluence carbon ion implantation,” Appl. Surf. Sci.256(8), 2616–2619 (2010). [CrossRef]
  19. C. Liu, J. Zhao, H. Zhang, and X. Wang, “Property Studies of Optical Waveguide Formed by keV He-Ion Implanted into a Nd:CNGG Crystal,” J. Korean Phys. Soc.55(61), 2638–2641 (2009). [CrossRef]
  20. F. Chen and J. R. Vazquez de Aldana, “Optical Waveguides in Crystalline Dielectric Materials Produced by Femtosecond Laser Micromachining,” Laser Photonics Rev. DOI: . [CrossRef]
  21. G. D. Marshall, M. Ams, and M. J. Withford, “Direct laser written waveguide-Bragg gratings in bulk fused silica,” Opt. Lett.31(18), 2690–2691 (2006). [CrossRef] [PubMed]
  22. Y. Ren, J. R. Vázquez de Aldana, F. Chen, and H. Zhang, “Channel waveguide lasers in Nd:LGS crystals,” Opt. Express21(5), 6503–6508 (2013). [CrossRef] [PubMed]
  23. K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett.21(21), 1729–1731 (1996). [CrossRef] [PubMed]
  24. R. Mary, S. J. Beecher, G. Brown, R. R. Thomson, D. Jaque, S. Ohara, and A. K. Kar, “Compact, highly efficient ytterbium doped bismuthate glass waveguide laser,” Opt. Lett.37(10), 1691–1693 (2012). [CrossRef] [PubMed]
  25. A. Ródenas, A. H. Nejadmalayeri, D. Jaque, and P. Herman, “Confocal Raman imaging of optical waveguides in LiNbO3 fabricated by ultrafast high-repetition rate laser-writing,” Opt. Express16(18), 13979–13989 (2008). [CrossRef] [PubMed]
  26. L. Wang, F. Chen, X. Wang, K. Wang, Y. Jiao, L. Wang, X. Li, Q. Lu, H. Ma, and R. Nie, “Low-loss planar and stripe waveguides in Nd 3+-doped silicate glass produced by oxygen-ion implantation,” J. Appl. Phys.101(5), 053112 (2007). [CrossRef]
  27. P. Szczepanski, A. Mossakowska, and D. Dejnarowicz, “Relaxation oscillations in waveguide distributed feedback lasers,” J. Lightwave Technol.10(2), 220–226 (1992). [CrossRef]
  28. M. Dinand and Ch. Schutte, “Theoretical Modeling of Relaxation Oscillation in Er-doped Waveguide lasers,” J. Lightwave Technol.13(1), 14–23 (1995). [CrossRef]
  29. D. G. Lancaster, S. Gross, H. Ebendorff-Heidepriem, M. J. Withford, T. M. Monro, and S. D. Jackson, “Efficient 2.9 μm fluorozirconate glass waveguide chip laser,” Opt. Lett.38(14), 2588–2591 (2013). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited