OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 19 — Sep. 23, 2013
  • pp: 22269–22284

Photo-thermal modulation of surface plasmon polariton propagation at telecommunication wavelengths

S. Kaya, J.-C. Weeber, F. Zacharatos, K. Hassan, T. Bernardin, B. Cluzel, J. Fatome, and C. Finot  »View Author Affiliations


Optics Express, Vol. 21, Issue 19, pp. 22269-22284 (2013)
http://dx.doi.org/10.1364/OE.21.022269


View Full Text Article

Enhanced HTML    Acrobat PDF (2496 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report on photo-thermal modulation of thin film surface plasmon polaritons (SPP) excited at telecom wavelengths and traveling at a gold/air interface. By operating a modulated continuous-wave or a Q-switched nanosecond pump laser, we investigate the photo-thermally induced modulation of SPP propagation mediated by the temperature-dependent ohmic losses in the gold film. We use a fiber-to-fiber characterization set-up to measure accurately the modulation depth of the SPP signal under photo-thermal excitation. On the basis of these measurements, we extract the thermo-plasmonic coefficient of the SPP mode defined as the temperature derivative of the SPP damping constant. Next, we introduce a figure of merit which is relevant to characterize the impact of temperature onto the properties of bounded or weakly leaky SPP modes supported by a given metal at a given wavelength. By combining our measurements with tabulated values of the temperature-dependent imaginary part of gold dielectric function, we compute the thermo-optical coefficients (TOC) of gold at telecom wavelengths. Finally, we investigate a pulsed photo-thermal excitation of the SPP in the nanosecond regime. The experimental SPP depth of modulation obtained in this situation are found to be in fair agreement with the modulation depths computed by using our values of gold TOC.

© 2013 OSA

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(260.3910) Physical optics : Metal optics
(350.5340) Other areas of optics : Photothermal effects

ToC Category:
Optics at Surfaces

History
Original Manuscript: July 15, 2013
Revised Manuscript: August 30, 2013
Manuscript Accepted: September 4, 2013
Published: September 13, 2013

Citation
S. Kaya, J.-C. Weeber, F. Zacharatos, K. Hassan, T. Bernardin, B. Cluzel, J. Fatome, and C. Finot, "Photo-thermal modulation of surface plasmon polariton propagation at telecommunication wavelengths," Opt. Express 21, 22269-22284 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-19-22269


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. P. Pells and M. Shiga, “The optical properties of copper and gold as a function of temperature,” J. Phys. C (Solid St. Phys.)2, 1835–1846 (1969). [CrossRef]
  2. K. Ujihara, “Reflectivity of metals at high temperatures,” J. Appl. Phys43, 2376–2382 (1972). [CrossRef]
  3. R. Rosei, F. Antonangeli, and U. M. Grassano, “d bands position and width in gold from very low temperature thermomodulation measurements,” Surf. Sci.37, 689–699 (1973). [CrossRef]
  4. P. Winsemius, M. Guerrisi, and R. Rosei, “Splitting of the interband absorption edge in Au: Temperature dependence,” Phys. Rev. B12, 4570–4572 (1975). [CrossRef]
  5. P. Winsemius, F. F. van Kampen, H. P. Lengkeek, and C. G. van Went, “Temperature dependence of the optical properties of Au, Ag and Cu,” J. Phys. F: Metal Phys.6, 1583–1606 (1976). [CrossRef]
  6. R. Rosei and D. W. Lynch, “Thermomodulation spectra of Al, Au and Cu,” Phys. Rev. B5, 3883–3893 (1972). [CrossRef]
  7. T. Holstein, “Theory of transport phenomena in an electron-phonon gas,” Ann. Phys.29, 410 (1964). [CrossRef]
  8. R. N. Gurzhi, “Mutual electron correlation in metal optics,” Sov. Phys. JETP8, 673 (1959).
  9. J. A. McKay and J. A. Rayne, “Temperature dependence of the infrared absorptivity of the noble metals,” Phys. Rev. B13, 673–685 (1976). [CrossRef]
  10. C. S. Moreira, A. M. N. Lima, H. Neff, and C. Thirstrup, “Temperature-dependent sensitivity of surface plasmon resonance sensors at gold-water interface,” Sensor and Actuators B134, 854–862 (2008). [CrossRef]
  11. X.-Y. Zhang, T. Zhang, A.-M. Hu, X.-J. Xue, P.-Q. Wu, and Q.-Y. Chen, “Tunable microring resonator based on dielectric-loaded surface plasmon polariton waveguides,” J. Nanosci. Nanotechnol.11, 10 520–10 524 (2011).
  12. M. Liu, M. Pelton, and P. Guyot-Sionnest, “Reduced damping of surface plasmons at low temperatures,” Phys. Rev. B79, 035 418 (2009).
  13. G. Baffou and R. Quidant, “Thermo-Plasmonics: using metallic nanostructures as nanosources of heat,” Laser Photon. Rev.7, 171–187 (2013). [CrossRef]
  14. M. Rashidi-Huyeh and B. Palpant, “Counterintuitive thermo-optical response of metal-dielectric nanocomposite materials as a result of local electromagnetic enhancement,” Phys. Rev. B74, 075 405 (2006). [CrossRef]
  15. B. Palpant, M. Rashidi-Huyeh, B. Gallas, S. Chenot, and S. Fisson, “Highly dispersive thermo-optical properties of gold nanoparticles,” Appl. Phys. Lett.90, 223 105 (2007). [CrossRef]
  16. J.-S. G. Bouillard, W. Dickson, D. P. O’Connor, G. A. Wurtz, and A. V. Zayats, “Low temperature plasmonics of metallic nanosctructures,” Nanolett.12, 1561–1565 (2012). [CrossRef]
  17. R. T. Beach and R. W. Christy, “Electron-electron scattering in the intraband optical conductivity of Cu, Ag and Au,” Phys. Rev. B16, 5277–5284 (1977). [CrossRef]
  18. G. R. Parkins, W. E. Lawrence, and R. W. Christy, “Intraband optical condutuctivity σ(ω, T) of Cu, Ag, Au: Contribution from electron-electron scattering,” Phys. Rev. B23, 6408–6416 (1981). [CrossRef]
  19. S. K. Ozdemir and G. Turhan-Sayan, “Temperature effects on surface plasmon resonance: Design considerations for an optical temperature sensor,” J. Lightwave Technol.21, 805 (2003). [CrossRef]
  20. A. Passian, A. L. Lereu, E. T. Arakawa, A. Wig, T. Thundat, and T. L. Ferrell, “Modulation of multiple photon energies by use of surface plasmons,” Opt. Lett.30, 41–43 (2005). [CrossRef] [PubMed]
  21. A. L. Lereu, A. Passian, J. P. Goudonnet, T. Thundat, and T. L. Ferrell, “Optical modulation processes in thin films based on thermal effects of surface plasmons,” Appl. Phys. Lett.86, 154 101 (2005). [CrossRef]
  22. T. Nikolajsen, K. Leosson, and S. I. Bozhevolnyi, “In-line extinction modulator based on long-range surface plasmon polaritons,” Opt. Commun.244, 455–459 (2005). [CrossRef]
  23. G. Gagnon, N. Lahoud, G. Mattiussi, and P. Berini, “Thermally activated variable attenuation of long-range surface plasmon polariton waves,” J. Lightwave Technol.24, 4391–4409 (2006). [CrossRef]
  24. O. Tsilipakos, T. V. Yioultsis, and E. E. Kriezis, “Theoretical analysis of thermally tunable microring resonator filters made of dielectric-loaded plasmonic waveguides,” J. Appl. Phys.106, 093 109 (2009). [CrossRef]
  25. K. Hassan, J.-C. Weeber, L. Markey, A. Dereux, O. Pitilakis, and E. E. Kriezis, “Thermo-optic plasmo-photonic mode interference switches based on dielectric loaded waveguides,” Appl. Phys. Lett.99, 241 110 (2011). [CrossRef]
  26. A. Pitilakis and E. E. Kriezis, “Longitudinal 2×2 switching configurations based on thermo-optically addressed dielectric-loaded plasmonic waveguides,” J. Lightwave Technol.29, 2636–2646 (2011). [CrossRef]
  27. J.-C. Weeber, K. Hassan, L. Saviot, A. Dereux, C. Boissière, O. Durupthy, C. Chaneac, E. Burov, and A. Pastouret, “Efficient photo-thermal activation of gold nanoparticle-doped polymer plasmonic switches,” Opt. Express20, 27 636–27 649 (2012). [CrossRef]
  28. J. Gosciniak and S. I. Bozhevolnyi, “Performance of thermo-optics components based on dielectric loaded surface plasmon polariton waveguides,” Scientific report3, 1803 (2013).
  29. H. Fan and P. Berini, “Thermo-optic characterization of long-range surface plasmon in Cytop,” Appl. Opt.52, 162–170 (2013). [CrossRef] [PubMed]
  30. C. Kittel, Introduction to solid state physics, 8th ed. (John Wiley and Sons, 2005).
  31. M. G. Nielsen, J.-C. Weeber, K. Hassan, J. Fatome, C. Finot, S. Kaya, L. Markey, O. Albrektsen, S. I. Bozhevolnyi, G. Millot, and A. Dereux, “Grating couplers for fiber-to-fiber characterizations of stand-alone dielectric loaded surface plasmon waveguide components,” J. Lightwave Technol.30, 3118–3125 (2012). [CrossRef]
  32. A. Drezet, A. Hohenau, D. Koller, A. Stepanov, H. Ditlbacher, B. Steiberger, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Leakage radiation microscopy of surface plasmon polaritons,” Mater. Sci. Eng. B149, 220–229 (2008). [CrossRef]
  33. H. Raether, Surface Plasmons on Smooth and Rough Surface and on Gratings (Springer-Verlag, Berlin, 1988).
  34. N. B. Dahotre and S. P. Harimkar, Laser Fabrication and Machining of Materials (Springer, New-York, 2008).
  35. J. D. Jackson, Classical Electrodynamics, 3rd ed. (John Wiley and Sons, 1999).
  36. J.-C. Weeber, A. Dereux, C. Girard, G. Colas des Francs, J. R. Krenn, and J. P. Goudonnet, “Optical addressing at the subwavelength scale,” Phys. Rev. E62, 7381–7388 (2000). [CrossRef]
  37. J.-C. Weeber, T. Bernardin, M. G. Nielsen, K. Hassan, S. Kaya, J. Fatome, C. Finot, A. Dereux, and N. Pleros, “Nanosecond thermo-optical dynamics of polymer loaded plasmonic waveguides,” Submitted for publication, (2013).
  38. G. V. Miloshevsky, V. A. Sizyuk, M. B. Partenskii, A. Hassanein, and P. C. Jordan, “Application of finite difference methods to membrane-mediated protein interactions and to heat and magnetic field diffusion in plasmas,” J. Comp. Phys.212, 25–51 (2006). [CrossRef]
  39. R. J. LeVeque, Finite Difference Methods for Ordinary and Partial Differential Equations (SIAM, Philadelphia, 2007).
  40. M. J. Latif, Heat Conduction, 3rd ed. (Springer-Verlag, Berlin Heidelberg, 2009), pp377.
  41. G. Chen and P. Hui, “Thermal conductivities of evaporated gold films on silicon and glass,” Appl. Phys. Lett.74, 2942–2944 (1999). [CrossRef]
  42. D. Canchal-Arias and P. Dawson, “Measurement and interpretation of mid-infrared properties of single crystal and polycrystalline gold,” Surf. Sci.577, 95–111 (2005). [CrossRef]
  43. P. B. Jonhson and R. W. Christy, “Optical constants of noble metals,” Phys. Rev. B6, 4370–4379 (1972). [CrossRef]
  44. W.-J. Lee, J.-E. Kim, H. Y. Park, S. Park, M.-S. Kim, J. T. Kim, and J. J. Ju, “Optical constants of evaporated gold films measured by surface plasmon resonance at telecommunication wavelengths,” J. Appl. Phys.103, 073 713 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited