OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 19 — Sep. 23, 2013
  • pp: 22320–22326

InGaN/GaN microcolumn light-emitting diode arrays with sidewall metal contact

Duk-Jo Kong, Si-Young Bae, Chang-Mo Kang, and Dong-Seon Lee  »View Author Affiliations


Optics Express, Vol. 21, Issue 19, pp. 22320-22326 (2013)
http://dx.doi.org/10.1364/OE.21.022320


View Full Text Article

Enhanced HTML    Acrobat PDF (1458 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In this study, we produce InGaN/GaN microcolumn LED (MC-LED) arrays having nonpolar metal sidewall contacts using a top-down method, where the metal contacts only with the sidewall of the columnar LEDs with an open top for transparency. The trapezoidal profile of the as-etched columns was altered to a rectangular profile through KOH treatment, exposing the nonpolar sidewalls. While the MC-LED with no treatment emitted no light because of the etch-damaged region, the MC-LEDs with KOH treatment exhibited much improved the electrical properties with the much higher shunt resistance due to the removal of the etch-damaged region. The optical output power was strongest for the MC-LED with a 5-min treatment indicating an almost complete removal of the damaged region.

© 2013 Optical Society of America

OCIS Codes
(220.4000) Optical design and fabrication : Microstructure fabrication
(230.3670) Optical devices : Light-emitting diodes
(310.6860) Thin films : Thin films, optical properties

ToC Category:
Optical Devices

History
Original Manuscript: May 2, 2013
Revised Manuscript: August 9, 2013
Manuscript Accepted: September 6, 2013
Published: September 16, 2013

Citation
Duk-Jo Kong, Si-Young Bae, Chang-Mo Kang, and Dong-Seon Lee, "InGaN/GaN microcolumn light-emitting diode arrays with sidewall metal contact," Opt. Express 21, 22320-22326 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-19-22320


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. O. Ambacher, J. Smart, J. R. Shealy, N. G. Weimann, K. Chu, M. Murphy, W. J. Schaff, L. F. Eastman, R. Dimitrov, L. Wittmer, M. Stutzmann, W. Rieger, and J. Hilsenbeck, “Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N- and Ga-face AlGaN/GaN heterostructures,” J. Appl. Phys.85(6), 3222–3233 (1999). [CrossRef]
  2. F. Bernardini, V. Fiorentini, and D. Vanderbilt, “Spontaneous polarization and piezoelectric constants of III-V nitrides,” Phys. Rev. B56(16), R10024–R10027 (1997). [CrossRef]
  3. W. J. Tseng, M. Gonzalez, L. Dillemans, K. Cheng, S. J. Jiang, M. Vereecken, G. Borghs, and R. R. Lieten, “Strain relaxation in GaN nanopillars,” Appl. Phys. Lett.101(25), 253102 (2012). [CrossRef]
  4. S. Keller, C. Schaake, N. A. Fichtenbaum, C. J. Neufeld, Y. Wu, K. McGroddy, A. David, S. P. DenBaars, C. Weisbuch, J. S. Speck, and U. K. Mishra, “Optical and structural properties of GaN nanopillar and nanostripe arrays with embedded InGaN/GaN multi-quantum wells,” J. Appl. Phys.100(5), 054314 (2006). [CrossRef]
  5. E. Y. Xie, Z. Z. Chen, P. R. Edwards, Z. Gong, N. Y. Liu, Y. B. Tao, Y. F. Zhang, Y. J. Chen, I. M. Watson, E. Gu, R. W. Martin, G. Y. Zhang, and M. D. Dawson, “Strain relaxation in InGaN/GaN micro-pillars evidenced by high resolution cathodoluminescence hyperspectral imaging,” J. Appl. Phys.112(1), 013107 (2012). [CrossRef]
  6. B. J. Kim, H. Hung, H. Y. Kim, J. Bang, and J. Kim, “Fabrication of GaN nanorods by inductively coupled plasma etching via SiO2 nanosphere lithography,” Thin Solid Films517(14), 3859–3861 (2009). [CrossRef]
  7. M.-H. Tsai, O. F. Sankey, K. E. Schmidt, and I. S. T. Tsong, “Electronic structures of polar and nonpolar GaN surfaces,” Mater. Sci. Eng. B88(1), 40–46 (2002). [CrossRef]
  8. M. Y. Hsieh, C. Y. Wang, L. Y. Chen, M. Y. Ke, and J. J. Huang, “InGaN/GaN nanorod light emitting arrays fabricated by silica nanomasks,” IEEE J. Quantum Electron.44(5), 468–472 (2008). [CrossRef]
  9. N. Miura, T. Nanjo, M. Suita, T. Oishi, Y. Abe, T. Ozeki, H. Ishikawa, T. Egawa, and T. Jimbo, “Thermal annealing effects on Ni/Au based Schottky contacts on n-GaN and AlGaN/GaN with insertion of high work function metal,” Solid-State Electron.48(5), 689–695 (2004). [CrossRef]
  10. L. Chen, J. Ho, C. Jong, C. C. Chiu, K. Shih, F. Chen, J. Kai, and L. Chang, “Oxidized Ni/Pt and Ni/Au ohmic contacts to p-type GaN,” Appl. Phys. Lett.76(25), 3703–3705 (2000). [CrossRef]
  11. J. C. Kim, S. Ti, and D. E. Mars, “Nanostructure optoelectronic device having sidewall electrical contact,” U.S. Patent 20110297913A1, 8 Dec. 2011.
  12. X. A. Cao, S. J. Pearton, G. T. Dang, A. P. Zhang, F. Ren, and J. M. Van Hove, “GaN n- and p-type Schottky diodes: Effect of dry etch damage,” IEEE J. Trans. Electron Devices.47(7), 1320–1324 (2000). [CrossRef]
  13. D. G. Kent, K. P. Lee, A. P. Zhang, B. Luo, M. E. Overberg, C. R. Abernathy, F. Ren, K. D. MacKenzie, S. J. Pearton, and Y. Nakagawa, “Electrical effects of N2 plasma exposure on dry-etch damage in p- and n-GaN Schottky diodes,” Solid-State Electron.45(10), 1837–1842 (2001). [CrossRef]
  14. D. Li, M. Sumiya, S. Fuke, D. Yang, D. Que, Y. Suzuki, and Y. Fukuda, “Selective etching of GaN polar surface in potassium hydroxide solution studied by x-ray photoelectron spectroscopy,” J. Appl. Phys.90(8), 4219–4223 (2001). [CrossRef]
  15. Y. B. Hahn, R. J. Choi, J. H. Hong, H. J. Park, C. S. Choi, and H. J. Lee, “High-density plasma-induced etch damage of InGaN/GaN multiple quantum well light-emitting diodes,” J. Appl. Phys.92(3), 1189–1194 (2002). [CrossRef]
  16. X. A. Cao, S. J. Pearton, A. P. Zhang, G. T. Dang, F. Ren, R. H. Shul, L. Zhang, R. Hickman, and J. M. Van Hove, “Electrical effects of plasma damage in p-GaN,” Appl. Phys. Lett.75(17), 2569–2571 (1999). [CrossRef]
  17. X. A. Cao, H. Cho, S. J. Pearton, G. T. Dang, A. P. Zhang, F. Ren, R. J. Shul, L. Zhang, R. Hickman, and J. M. Van Hove, “Depth and thermal stability of dry etch damage in GaN Schottky diodes,” Appl. Phys. Lett.75(2), 232–234 (1999). [CrossRef]
  18. J. S. Jang, S. J. Park, and T. Y. Seong, “Effects of surface treatment on the electrical properties of ohmic contacts to (In)GaN for high performance optical device,” Phys. Status Solidi A194(2), 576–582 (2002). [CrossRef]
  19. D. A. Stocker, E. F. Schubert, and J. M. Redwing, “Crystallographic wet chemical etching of GaN,” Appl. Phys. Lett.73(18), 2654–2656 (1998). [CrossRef]
  20. J. A. Bardwell, I. G. Foulds, J. B. Webb, H. Tang, J. Fraser, S. Moisa, and S. J. Rolfe, “A simple wet etch for GaN,” J. Electron. Mater.28(10), L24–L26 (1999). [CrossRef]
  21. A. C. Tamboli, M. C. Schmidt, S. Rajan, J. S. Speck, U. K. Mishra, S. P. DenBaars, and E. L. Hu, “Smooth top-down photoelectrochemical etching of m-plane GaN,” J. Electrochem. Soc.156(1), H47–H51 (2009). [CrossRef]
  22. S. Y. Bae, D. J. Kong, J. Y. Lee, D. J. Seo, and D. S. Lee, “Size-controlled InGaN/GaN nanorod array fabrication and optical characterization,” Opt. Express21(14), 16854–16862 (2013). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited