OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 19 — Sep. 23, 2013
  • pp: 22338–22352

Self-compensation of thermally induced depolarization in CaF2 and definite cubic single crystals

Anton G. Vyatkin, Ilya L. Snetkov, Oleg V. Palashov, and Efim A. Khazanov  »View Author Affiliations

Optics Express, Vol. 21, Issue 19, pp. 22338-22352 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (2543 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Compensation of thermally induced depolarization in laser active elements at small birefringence without additional phase elements was proposed and observed experimentally. Requirements to the crystals were formulated. An order of magnitude reduction of depolarization degree was obtained experimentally. A further modification of the scheme was developed.

© 2013 Optical Society of America

OCIS Codes
(140.3580) Lasers and laser optics : Lasers, solid-state
(140.6810) Lasers and laser optics : Thermal effects

ToC Category:
Lasers and Laser Optics

Original Manuscript: June 6, 2013
Manuscript Accepted: July 26, 2013
Published: September 16, 2013

Anton G. Vyatkin, Ilya L. Snetkov, Oleg V. Palashov, and Efim A. Khazanov, "Self-compensation of thermally induced depolarization in CaF2 and definite cubic single crystals," Opt. Express 21, 22338-22352 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. W. Koechner, Solid-State Laser Engineering (Springer-Verlag, 1999).
  2. J. F. Nye, Physical Properties of Crystals (Oxford University Press, 1964).
  3. J. D. Foster and L. M. Osterink, “Thermal effects in a Nd:YAG laser,” J. Appl. Phys.41(9), 3656–3663 (1970). [CrossRef]
  4. G. A. Massey, “Criterion for selection of cw laser host materials to increase available power in the fundamental mode,” Appl. Phys. Lett.17(5), 213–215 (1970). [CrossRef]
  5. W. Koechner, “Absorbed pump power, thermal profile and stresses in a cw pumped Nd:YAG crystal,” Appl. Opt.9(6), 1429–1434 (1970). [CrossRef] [PubMed]
  6. W. Koechner and D. K. Rice, “Effect of birefringence on the performance of linearly polarized YAG:Nd lasers,” IEEE J. Quantum Electron.6(9), 557–566 (1970). [CrossRef]
  7. M. A. Karr, “Nd:YAlG laser cavity loss due to an internal Brewster polarizer,” Appl. Opt.10(4), 893–895 (1971). [CrossRef] [PubMed]
  8. L. N. Soms, A. A. Tarasov, and V. V. Shashkin, “On the problem of depolarization of linearly polarized light by a YAG:Nd3+ laser rod under conditions of thermally induced birefringence conditions,” Soviet J. Quantum Electron.10(3), 350–351 (1980). [CrossRef]
  9. L. N. Soms and A. A. Tarasov, “Thermal deformation in color-center laser active elements,” Soviet J. Quantum Electron.9(12), 1506–1508 (1979). [CrossRef]
  10. I. Shoji and T. Taira, “Intrinsic reduction of the depolarization loss in solid-state lasers by use of a (110)-cut Y3Al5O12 crystal,” Appl. Phys. Lett.80(17), 3048–3050 (2002). [CrossRef]
  11. I. B. Mukhin, O. V. Palashov, E. A. Khazanov, and I. A. Ivanov, “Influence of the orientation of a crystal on thermal polarization effects in high-power solid-state lasers,” JETP Lett.81(3), 90–94 (2005). [CrossRef]
  12. I. B. Mukhin, O. V. Palashov, and E. A. Khazanov, “Reduction of thermally induced depolarization of laser radiation in [110] oriented cubic crystals,” Opt. Express17(7), 5496–5501 (2009). [CrossRef] [PubMed]
  13. E. Khazanov, N. Andreev, O. Palashov, A. Poteomkin, A. Sergeev, O. Mehl, and D. H. Reitze, “Effect of terbium gallium garnet crystal orientation on the isolation ratio of a Faraday isolator at high average power,” Appl. Opt.41(3), 483–492 (2002). [CrossRef] [PubMed]
  14. E. A. Khazanov, “Thermally induced birefringence in Nd:YAG ceramics,” Opt. Lett.27(9), 716–718 (2002). [CrossRef] [PubMed]
  15. I. Snetkov, A. Vyatkin, O. Palashov, and E. Khazanov, “Drastic reduction of thermally induced depolarization in CaF₂ crystals with [111] orientation,” Opt. Express20(12), 13357–13367 (2012). [CrossRef] [PubMed]
  16. W. Koechner and D. K. Rice, “Birefringence of YAG: Nd laser rods as a function of growth direction,” J. Opt. Soc. Am.61(6), 758–766 (1971). [CrossRef]
  17. A. G. Vyatkin and E. A. Khazanov, “Thermally induced depolarization in sesquioxide class m3 single crystals,” J. Opt. Soc. Am. B28(4), 805–811 (2011). [CrossRef]
  18. W. C. Scott and M. de Wit, “Birefringence compensation and TEM00 mode enhancement in a Nd:YAG laser,” Appl. Phys. Lett.18(1), 3–4 (1971). [CrossRef]
  19. G. Giuliani and P. Ristori, “Polarization flip cavities: a new approach to laser resonators,” Opt. Commun.35(1), 109–112 (1980). [CrossRef]
  20. N. F. Andreev, N. G. Bondarenko, I. V. Eremina, S. V. Kuznetsov, O. V. Palashov, G. A. Pasmanik, and E. A. Khazanov, “Single-mode YAG:Nd laser with a stimulated Brillouin scattering mirror and conversion of radiation to the second and fourth harmonics,” Soviet J. Quantum Electron.21(10), 1045–1051 (1991). [CrossRef]
  21. E. A. Khazanov, “A new Faraday rotator for high average power lasers,” Quantum Electron.31(4), 351–356 (2001). [CrossRef]
  22. W. A. Clarkson, N. S. Felgate, and D. C. Hanna, “Simple method for reducing the depolarization loss resulting from thermally induced birefringence in solid-state lasers,” Opt. Lett.24(12), 820–822 (1999). [CrossRef] [PubMed]
  23. E. Khazanov, A. Poteomkin, and E. Katin, “Compensating for birefringence in active elements of solid-state lasers: novel method,” J. Opt. Soc. Am. B19(4), 667–671 (2002). [CrossRef]
  24. E. Khazanov, “Use of parallel axicon for compensation of birefringence in active elements of solid-state lasers,” Proc. SPIE 4632, 155–163 (2002) (Laser and Beam Control Technologies, ed. S. Basu and J. F. Riker).
  25. R. C. Jones, “A new calculus for the treatment of optical systems,” J. Opt. Soc. Am.31(7), 488–503 (1941). [CrossRef]
  26. S. Timoshenko and J. N. Goodier, Theory of Elasticity (McGraw-Hill, 1951).
  27. F. W. Quelle., “Thermal distortion of diffraction-limited optical elements,” Appl. Opt.5(4), 633–637 (1966). [CrossRef] [PubMed]
  28. M. J. Weber, Handbook of optical materials (CRC Press, 2003).
  29. K. Veerabhadra Rao and T. S. Narasimhamurty, “Photoelastic constants of CaF2 and BaF2,” J. Phys. Chem. Solids31, 876–878 (1969).
  30. R. W. Dixon, “Photoelastic properties of selected materials and their relevance for applications to acoustic light modulators and scanners,” Appl. Phys. (Berl.)38, 5149–5153 (1967).
  31. R. E. Joiner, J. Marburger, and W. H. Steier, “Elimination of stress-induced birefringence effects in single-crystal high-power laser windows,” Appl. Phys. Lett.30(9), 485–486 (1977). [CrossRef]
  32. W. Martienssen and H. Warlimont, Handbook of Condensed Matter and Materials Data (Springer, 2006).
  33. M. S. Kochetkova, M. A. Martyanov, A. K. Poteomkin, and E. A. Khazanov, “Propagation of laser radiation in a medium with thermally induced birefringence and cubic nonlinearity,” Opt. Express18(12), 12839–12851 (2010). [CrossRef] [PubMed]
  34. M. S. Kuzmina, M. A. Martyanov, A. K. Poteomkin, E. A. Khazanov, and A. A. Shaykin, “Theoretical and experimental study of laser radiation propagating in a medium with thermally induced birefringence and cubic nonlinearity,” Opt. Express19(22), 21977–21988 (2011). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: AVI (764 KB)     
» Media 2: AVI (2801 KB)     
» Media 3: AVI (4068 KB)     
» Media 4: AVI (3565 KB)     
» Media 5: AVI (4064 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited