OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 19 — Sep. 23, 2013
  • pp: 22367–22373

Tunable quantum dot parametric source

A. Andronico, I. Favero, S. Ducci, J. M. Gérard, and G. Leo  »View Author Affiliations

Optics Express, Vol. 21, Issue 19, pp. 22367-22373 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1372 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report on the modeling of an electrically pumped nonlinear source for spontaneous parametric down-conversion in an AlGaAs single-sided Bragg waveguide. Laser emission from InAs quantum dots embedded in the waveguide core is designed to excite a Bragg pump mode at 950 nm. This mode is phase matched with two cross-polarized total-internal-reflection fundamental signal and idler modes around 1900 nm. Besides numerically evaluating the source efficiency, we discuss the crucial role played by the quantum dots in the practical implementation of the phase-matching condition along with the tuning capabilities of this promising active device.

© 2013 Optical Society of America

OCIS Codes
(190.4360) Nonlinear optics : Nonlinear optics, devices
(230.5590) Optical devices : Quantum-well, -wire and -dot devices

ToC Category:
Optical Devices

Original Manuscript: July 4, 2013
Revised Manuscript: August 14, 2013
Manuscript Accepted: August 31, 2013
Published: September 16, 2013

A. Andronico, I. Favero, S. Ducci, J. M. Gérard, and G. Leo, "Tunable quantum dot parametric source," Opt. Express 21, 22367-22373 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Q. Y. Lu, N. Bandyopadhyay, S. Slivken, Y. Bai, and M. Razeghi, “Widely tuned room temperature terahertz quantum cascade laser sources based on difference-frequency generation,” Appl. Phys. Lett.101(251121), 1–4 (2012).
  2. K. Vijayraghavan, R. W. Adams, A. Vizbaras, M. Jang, C. Grasse, G. Boehm, M. C. Amann, and M. A. Belkin, “Terahertz sources based on Čerenkov difference-frequency generation in quantum cascade lasers,” Appl. Phys. Lett.100(251104), 1–4 (2012).
  3. M. A. Belkin, M. Jang, R. W. Adams, J. X. Chen, W. O. Charles, C. Gmachl, L. W. Cheng, F.-S. Choa, X. Wang, M. Troccoli, A. Vizbaras, M. Anders, C. Grasse, and M.-C. Amann, “InGaAs/AlInAs quantum cascade laser sources based on intra-cavity second harmonic generation emitting in 2.6-3.6 micron range,” Proc. SPIE7953(795315), 1–7 (2011).
  4. B. J. Bijlani, P. Abolghasem, A. Reijnders, and A. S. Helmy, “Intracavity parametric fluorescence in diode lasers,” in Proceedings of OSA/CLEO 2011, paper PDPA3 (2011).
  5. V. Berger, A. Fiore, E. Rosencher, P. Bravetti, and J. Nagle, “Phase matching using an isotropic nonlinear optical material,” Nature391(6666), 463–466 (1998). [CrossRef]
  6. E. Guillotel, M. Ravaro, F. Ghiglieno, C. Langlois, C. Ricolleau, S. Ducci, I. Favero, and G. Leo, “Parametric amplification in GaAs/AlOx waveguide,” Appl. Phys. Lett.94(171110), 1–3 (2009).
  7. M. Savanier, A. Andronico, A. Lemaître, E. Galopin, C. Manquest, I. Favero, S. Ducci, and G. Leo, “Large second-harmonic generation at 1.55 μm in oxidized AlGaAs waveguides,” Opt. Lett.36(15), 2955–2957 (2011). [CrossRef] [PubMed]
  8. X. Yu, L. Scaccabarozzi, A. C. Lin, M. M. Fejer, and J. S. Harris, “Growth of GaAs with orientation-patterned structures for nonlinear optics,” J. Cryst. Growth301–302, 163–167 (2007). [CrossRef]
  9. J. Ota, W. Narita, I. Ohta, T. Matsushita, and T. Kondo, “Fabrication of periodically-inverted AlGaAs waveguides for quasi-phase-matched wavelength conversion at 1.55µm,” Jpn. J. Appl. Phys.48(4), 04C110 (2009). [CrossRef]
  10. A. De Rossi, V. Ortiz, M. Calligaro, B. Vinter, J. Nagle, S. Ducci, and V. Berger, “A third-order-mode laser diode for quantum communication,” Semicond. Sci. Technol.19(10), L99–L102 (2004). [CrossRef]
  11. S. Ducci, L. Lanco, V. Berger, A. De Rossi, V. Ortiz, and M. Calligaro, “Continuous-wave second-harmonic generation in modal phase matched semiconductor waveguides,” Appl. Phys. Lett.84(16), 2974–2976 (2004). [CrossRef]
  12. A. S. Helmy, “Phase matching using Bragg reflection waveguides for monolithic nonlinear optics applications,” Opt. Express14(3), 1243–1252 (2006). [CrossRef] [PubMed]
  13. A. Orieux, A. Eckstein, A. Lemaître, P. Filloux, I. Favero, G. Leo, T. Coudreau, A. Keller, P. Milman, and S. Ducci, “Direct Bell States Generation on a III-V Semiconductor Chip at Room Temperature,” Phys. Rev. Lett.110(16), 160502 (2013). [CrossRef] [PubMed]
  14. P. Abolghasem and A. S. Helmy, “Single-sided Bragg reflection waveguides with multilayer core for monolithic semiconductor parametric devices,” J. Opt. Soc. Am. B29(6), 1367–1375 (2012). [CrossRef]
  15. J. M. Gérard, O. Cabrol, and B. Sermage, “InAs quantum boxes: highly efficient radiative traps for light emitting devices on Si,” Appl. Phys. Lett.68(22), 3123 (1996). [CrossRef]
  16. J. M. Gérard, “InAs quantum boxes: active probes for air/GaAs photonic bandgap microstructures,” in « Quantum Optics in Wavelength scale Structures », J. Rarity and C. Weisbuch eds, NATO ASI series E324, 219, Kluwer, Dordrecht (1996).
  17. J. M. Gérard, D. Barrier, J. Y. Marzin, R. Kuszelewicz, L. Manin, E. Costard, V. Thierry-Mieg, and T. Rivera, “Quantum boxes as active probes for photonic microstructures: the pillar microcavity case,” Appl. Phys. Lett.69(4), 449 (1996). [CrossRef]
  18. S. Noda, M. Fujita, and T. Asano, “Spontaneous-emission control by photonic crystals and nanocavities,” Nat. Photonics1(8), 449–458 (2007). [CrossRef]
  19. S. A. Moore, L. O’Faolain, M. A. Cataluna, M. B. Flynn, M. V. Kotlyar, and T. F. Krauss, “Reduced surface sidewall recombination and diffusion in quantum-dot lasers,” IEEE Photon. Technol. Lett.18(17), 1861–1863 (2006). [CrossRef]
  20. J. P. Reithmaier and A. Forchel, “Recent advances in semiconductor quantum-dot laser,” C. R. Phys.4(6), 611–619 (2003). [CrossRef]
  21. D. Bimberg, G. Fiol, M. Kuntz, C. Meuer, M. Lämmlin, N. N. Ledentsov, and A. R. Kovsh, “High speed nanophotonic devices based on quantum dots,” Phys. Status Solidi A203(14), 3523–3532 (2006). [CrossRef]
  22. Y. Barbarin, S. Anantathanasarn, E. A. J. M. Bente, Y. S. Oei, M. K. Smit, and R. Nötzel, “1.55 µm range InAs-InP (100) quantum dot Fabry-Pérot and ring lasers using deeply etched ridge waveguides,” IEEE Photon. Technol. Lett.18, 2644 (2006). [CrossRef]
  23. M. Munsch, J. Claudon, N. S. Malik, K. Gilbert, P. Grosse, J. M. Gérard, F. Albert, F. Langer, T. Schlereth, M. M. Pieczarka, S. Höfling, M. Kamp, A. Forchel, and S. Reitzenstein, “Room temperature, continuous wave lasing in microcylinder and microring quantum dot laser diodes,” Appl. Phys. Lett.100(3), 031111 (2012). [CrossRef]
  24. P. Abolghasem and A. S. Helmy, “Matching layers in Bragg reflection waveguides for enhanced nonlinear interaction,” IEEE J. Quantum Electron.45(6), 646–653 (2009). [CrossRef]
  25. Documentation, http://www.nextnano.de/nextnano3 .
  26. D. L. Huffaker and D. G. Deppe, “Intracavity contacts for low-threshold oxide-confined vertical-cavity surface-emitting lasers,” IEEE Photon. Technol. Lett.11(8), 934–936 (1999). [CrossRef]
  27. C.-P. Yu and H.-C. Chang, “Yee-mesh-based finite difference eigenmode solver with PML absorbing boundary conditions for optical waveguides and photonic crystal fibers,” Opt. Express12(25), 6165–6177 (2004). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited