OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 19 — Sep. 23, 2013
  • pp: 22374–22388

Electronic and thermal refractive index changes in Ytterbium-doped fiber amplifiers

M. S. Kuznetsov, O. L. Antipov, A. A. Fotiadi, and P. Mégret  »View Author Affiliations

Optics Express, Vol. 21, Issue 19, pp. 22374-22388 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (863 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We develop a theoretical framework to analyze the mechanism of refractive index changes (RIC) in double-clad Yb3+ doped optical fibers under resonant core or clad pumping, and with signal amplification. The model describes and compares thermal and electronic contributions to the phase shifts induced on the amplified signal at 1064 nm and the probe signal at 1550 nm, i.e. located inside and outside of the fiber amplification band, respectively. The ratio between the thermal and electronic phase shifts is evaluated as a function of the pump pulse duration, the gain saturation, the amplified beam power and for a variety of fiber parameters.

© 2013 Optical Society of America

OCIS Codes
(060.2300) Fiber optics and optical communications : Fiber measurements
(060.2400) Fiber optics and optical communications : Fiber properties
(140.3510) Lasers and laser optics : Lasers, fiber
(140.6810) Lasers and laser optics : Thermal effects
(060.3510) Fiber optics and optical communications : Lasers, fiber

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: July 11, 2013
Revised Manuscript: August 31, 2013
Manuscript Accepted: September 5, 2013
Published: September 16, 2013

M. S. Kuznetsov, O. L. Antipov, A. A. Fotiadi, and P. Mégret, "Electronic and thermal refractive index changes in Ytterbium-doped fiber amplifiers," Opt. Express 21, 22374-22388 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. J. F. Digonnet, R. W. Sadowski, H. J. Shaw, and R. H. Pantell, “Resonantly enhanced nonlinearity in doped fibers for low-power all-optical switching: A review,” Opt. Fiber Technol.3, 44–64 (1997). [CrossRef]
  2. E. Desurvire, Erbium-doped Fiber Amplifiers: Principles and Applications (Willey, New York, 1994).
  3. J. W. Arkwright, P. Elango, G. R. Atkins, T. Whitbread, and M. F. Digonnet, “Experimental and theoretical analysis of the resonant nonlinearity in ytterbium-doped fiber,” J. Lightwave Technol.16, 798–806 (1998). [CrossRef]
  4. A. Fotiadi, O. Antipov, and P. Mégret, “Dynamics of pump-induced refractive index changes in single-mode Yb-doped optical fibers,” Opt. Express16, 12658–12663 (2008). [CrossRef] [PubMed]
  5. D. J. Richardson, J. Nilsson, and W. A. Clarkson, “High power fiber lasers: current status and future perspectives,” J. Opt. Soc. Am. B27, 63–92 (2010). [CrossRef]
  6. T. Eidam, C. Wirth, C. Jauregui, F. Stutzki, F. Jansen, H.-J. Otto, O. Schmidt, T. Schreiber, J. Limpert, and A. Tünnermann, “Experimental observations of the threshold-like onset of mode instabilities in high power fiber amplifiers,” Opt. Express19, 13218–13224 (2011). [CrossRef] [PubMed]
  7. A. Smith and J. Smith, “Mode instability in high power fiber amplifiers,” Opt. Express19, 10180–10192 (2011). [CrossRef] [PubMed]
  8. C. Jauregui, T. Eidam, J. Limpert, and A. Tünnermann, “The impact of modal interference on the beam quality of high-power fiber amplifiers„” Opt. Express19, 3258–3271 (2011). [CrossRef] [PubMed]
  9. C. Jauregui, T. Eidam, H.-J. Otto, F. Stutzki, F. Jansen, J. Limpert, and A. Tünnermann, “Temperature-induced index gratings and their impact on mode instabilities in high-power fiber laser systems,” Opt. Express20, 440–451 (2012). [CrossRef] [PubMed]
  10. V. Spirin, C. López-Mercado, D. Kinet, P. Mégret, I. Zolotovskiy, and A. Fotiadi, “Single longitudinal-mode brillouin fiber laser passively stabilized at pump resonance frequency with dynamic population inversion grating,” Laser Phys. Lett.10, 015102 (2013). [CrossRef]
  11. S. Turitsyn, A. Bednyakova, M. Fedoruk, A. Latkin, A. Fotiadi, A. Kurkov, and E. Sholokhov, “Modeling of cw Yb-doped fiber lasers with highly nonlinear cavity dynamics,” Opt. Express19, 8394–8405 (2011). [CrossRef] [PubMed]
  12. H. Bruesselbach, D. C. Jones, M. S. Mangir, M. Minden, and J. Rogers, “Self-organized coherence in fiber laser arrays,” Opt. Lett.30, 13–15 (2005). [CrossRef]
  13. T. Fan, “Laser beam combining for high-power, high-radiance sources,” IEEE J. Sel. Top. Quantum Electron.11, 567–577 (2005). [CrossRef]
  14. H. Bruesselbach, S. Wang, M. Minden, D. Jones, and M. Mangir, “Power-scalable phase-compensating fiber-array transceiver for laser communications through the atmosphere,” J. Opt. Soc. Am. B22, 347–353 (2005). [CrossRef]
  15. A. Fotiadi, N. G. Zakharov, O. Antipov, and P. Mégret, “All-fiber coherent combining of Er-doped amplifiers through refractive index control in Yb-doped fibers,” Opt. Lett.34, 3574–3576 (2009). [CrossRef] [PubMed]
  16. A. Fotiadi, O. Antipov, M. Kuznetsov, K. Panajotov, and P. Mégret, “Rate equation for the nonlinear phase shift in Yb-doped optical fibers under resonant diode-laser pumping,” J. Hologr. and Speckle5, 1–4 (2009).
  17. A. Fotiadi, O. Antipov, and P. Mégret, “Resonantly induced refractive index changes in Yb-doped fibers: the origin, properties and application for all-fiber coherent beam combining,” in Frontiers in Guided Wave Optics and Optoelectronics, B. Pal, ed. (INTECH, 2010), chap. 11, pp. 209–234.
  18. H. Tünnermann, J. Neumann, D. Kracht, and P. Weßels, “Gain dynamics and refractive index changes in fiber amplifiers: a frequency domain approach,” Opt. Express20, 13539–13550 (2012). [CrossRef] [PubMed]
  19. A. Fotiadi, O. Antipov, M. Kuznetsov, and P. Mégret, “Refractive index changes in rare earth-doped optical fibers and their applications in all-fiber coherent beam combinig,” in Coherent Laser Beam Combining, A. Brignon, ed. (John Wiley & Sons, 2013), chap. 7, pp. 193–230. [CrossRef]
  20. S. Stepanov, A. Fotiadi, and P. Mégret, “Effective recording of dynamic phase gratings in Yb-doped fibers with saturable absorption at 1064 nm,” Opt. Express15, 8832–8837 (2007). [CrossRef] [PubMed]
  21. M. Davis, M. Digonnet, and R. Pantell, “Thermal effects in doped fibers,” J. Lightwave Tech.16, 1013–1023 (1998). [CrossRef]
  22. D. Brown and H. Hoffman, “Thermal, stress, and thermo-optic effects in high average power double-clad silica fiber lasers,” IEEE J. Quantum Electron.37, 207–217 (2001). [CrossRef]
  23. O. Antipov, O. Eremeykin, A. Savikin, V. Vorob’ev, D. Bredikhin, and M. Kuznetsov, “Electronic changes of refractive index in intensively pumped Nd:YAG laser crystals,” IEEE J. Quantum Electron.39, 910–918 (2003). [CrossRef]
  24. R. Soulard, R. Moncorgé, A. Zinoviev, K. Petermann, O. Antipov, and A. Brignon, “Nonlinear spectroscopic properties of Yb3+-doped sesquioxides Lu2O3 and Sc2O3,” Opt. Express18, 11173–11180 (2010). [CrossRef] [PubMed]
  25. V. Gainov and O. Ryabushkin, “Effect of optical pumping on the refractive index and temperature in the core of active fibre,” Quantum Electronics41, 809–814 (2011). [CrossRef]
  26. H. Tünnermann, J. Neumann, D. Kracht, and P. Weßels, “All-fiber phase actuator based on an erbium-doped fiber amplifier for coherent beam combining at 1064 nm,” Opt. Lett.36, 448–450 (2011). [CrossRef] [PubMed]
  27. M. Bass, E. Van Stryland, D. Williams, and W. Wolfe, Handbook for Optics, 2nd ed. (MGH, 1995).
  28. V. Privalko, Handbook for Physical Chemistry of Polymers (Naukova Dumka, Kiev, 1984).
  29. M. Melkumov, I. Bufetov, K. Kravtsov, A. Shubin, and E. Dianov, Cross Sections of Absorption and Stimulated Emission of Yb3+ Ions in Silica Fibers Doped with P2O5 and Al2O3 (FORC, Moscow, 2004).
  30. A. Fotiadi, O. Antipov, I. Bufetov, E. Dianov, and P. Mégret, “Comparative study of pump-induced refractive index changes in aluminum and phosphate silicate Yb-doped fibers,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, (Optical Society of America, Washington, D.C., 2009), paper JWA9. [CrossRef]
  31. J. W. Dawson, M. J. Messerly, R. J. Beach, M. Y. Shverdin, E. A. Stappaerts, A. K. Sridharan, P. H. Pax, J. E. Heebner, C. W. Siders, and C. Barty, “Analysis of the scalability of diffraction-limited fiber lasers and amplifiers to high average power,” Opt. Express16, 13240–13266 (2008). [CrossRef] [PubMed]
  32. G. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic Press, 2001).
  33. H.-G. Unger, Planar Optical Waveguides and Fibres (Oxford University Press, 1977).
  34. E. Tugolukov, Solution of Problems of Thermal Conductivity by Finite Integral Transforms: a Tutorial (TSTU, Tambov, 2005).
  35. H. Carslow and J. Jaeger, Conduction of Heat in Solids (Science, Moscow, 1964).
  36. S. Stepanov and M.P. Sánchez, “Phase population gratings recorded in ytterbium doped fiber at 1064 nm,” in 22nd Congress of the International Commission for Optics: Light for the Development of the World, R. Rodríguez-Vera and R. Díaz-Uribe, eds., Proc. SPIE 8011, 801153 (2011). [CrossRef]
  37. A. Luikov, Analytical Heat Diffusion Theory (Academic Press, 1968).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited