OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 19 — Sep. 23, 2013
  • pp: 22429–22440

Metal-optic cavity for a high efficiency sub-fF Germanium photodiode on a Silicon waveguide

Ryan Going, Myung-Ki Kim, and Ming C Wu  »View Author Affiliations

Optics Express, Vol. 21, Issue 19, pp. 22429-22440 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1329 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We propose two designs of nanoscale sub-fF germanium photodiodes which are efficiently integrated with silicon waveguides. The metal-optic cavities are simulated with the finite difference time domain method and optimized using critical coupling concepts. One design is for a metal semiconductor metal photodiode with <200 aF capacitance, 39% external quantum efficiency, and 0.588 (λ/n)3 cavity volume at 1.5µm wavelength. The second design is for a vertical p-i-n photodiode with <100 aF capacitance, 51% external quantum efficiency, and 0.804 (λ/n)3 cavity volume. Both designs make use of CMOS compatible materials germanium and aluminum metal for potential future monolithic integration with silicon photonics.

© 2013 Optical Society of America

OCIS Codes
(230.5160) Optical devices : Photodetectors
(260.3910) Physical optics : Metal optics
(130.3990) Integrated optics : Micro-optical devices

ToC Category:
Integrated Optics

Original Manuscript: July 22, 2013
Revised Manuscript: September 3, 2013
Manuscript Accepted: September 3, 2013
Published: September 16, 2013

Ryan Going, Myung-Ki Kim, and Ming C Wu, "Metal-optic cavity for a high efficiency sub-fF Germanium photodiode on a Silicon waveguide," Opt. Express 21, 22429-22440 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. A. B. Miller, “Device requirements for optical interconnects to silicon chips,” Proc. IEEE97(7), 1166–1185 (2009). [CrossRef]
  2. M. A. Taubenblatt, “Optical interconnects for high-performance computing,” J. Lightwave Technol.30(4), 448–457 (2012). [CrossRef]
  3. M. Rouviere, M. Halbwax, J. Cercus, E. Cassan, L. Vivien, D. Pascal, M. Heitzmann, J.-M. Hartmann, and S. Laval, “Integration of germanium waveguide photodetectors for intrachip optical interconnects,” Opt. Eng.44, 075402 (2005).
  4. R. F. Potter, “Germanium (Ge),” in Handbook of Optical Constants of Solids, Palik, E. D., ed. (Academic Press, 1985), Vol. 1, pp. 465–478.
  5. C. T. DeRose, D. C. Trotter, W. A. Zortman, A. L. Starbuck, M. Fisher, M. R. Watts, and P. S. Davids, “Ultra compact 45 GHz CMOS compatible Germanium waveguide photodiode with low dark current,” Opt. Express19(25), 24897–24904 (2011). [CrossRef] [PubMed]
  6. L. Chen and M. Lipson, “Ultra-low capacitance and high speed germanium photodetectors on silicon,” Opt. Express17(10), 7901–7906 (2009). [CrossRef] [PubMed]
  7. J. Wang and S. Lee, “Ge-photodetectors for Si-based optoelectronic integration,” Sensors (Basel)11(12), 696–718 (2011). [CrossRef] [PubMed]
  8. O. Dosunmu, D. Cannon, M. Emsley, B. Ghyselen, J. Liu, L. Kimerling, and M. Unlu, “Resonant cavity enhanced Ge photodetectors for 1550 nm operation on reflecting Si substrates,” IEEE J. Sel. Top. Quantum Electron.10(4), 694–701 (2004). [CrossRef]
  9. L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D.-S. Ly-Gagnon, K. C. Saraswat, and D. A. B. Miller, “Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat. Photonics2(4), 226–229 (2008). [CrossRef]
  10. F.-F. Ren, K.-W. Ang, J. Ye, M. Yu, G.-Q. Lo, and D.-L. Kwong, “Split Bull’s eye shaped aluminum antenna for plasmon-enhanced nanometer scale germanium photodetector,” Nano Lett.11(3), 1289–1293 (2011). [CrossRef] [PubMed]
  11. M.-K. Kim, A. M. Lakhani, and M. C. Wu, “Efficient waveguide-coupling of metal-clad nanolaser cavities,” Opt. Express19(23), 23504–23512 (2011). [CrossRef] [PubMed]
  12. M. T. Hill, Y.-S. Oei, B. Smalbrugge, Y. Zhu, T. de Vries, P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. de Waardt, E. J. Geluk, S.-H. Kwon, Y.-H. Lee, R. Notzel, and M. K. Smit, “Lasing in metallic-coated nanocavities,” Nat. Photonics1(10), 589–594 (2007). [CrossRef]
  13. K. Ding, M. T. Hill, Z. C. Liu, L. J. Yin, P. J. van Veldhoven, and C. Z. Ning, “Record performance of electrical injection sub-wavelength metallic-cavity semiconductor lasers at room temperature,” Opt. Express21(4), 4728–4733 (2013). [CrossRef] [PubMed]
  14. M. T. Hill, M. Marell, E. S. P. Leong, B. Smalbrugge, Y. Zhu, M. Sun, P. J. van Veldhoven, E. J. Geluk, F. Karouta, Y.-S. Oei, R. Nötzel, C.-Z. Ning, and M. K. Smit, “Lasing in metal-insulator-metal sub-wavelength plasmonic waveguides,” Opt. Express17(13), 11107–11112 (2009). [CrossRef] [PubMed]
  15. Q. Ding, A. Mizrahi, Y. Fainman, and V. Lomakin, “Dielectric shielded nanoscale patch laser resonators,” Opt. Lett.36(10), 1812–1814 (2011). [CrossRef] [PubMed]
  16. Y. Liu, M. Deal, and J. Plummer, “Rapid melt growth of Germanium crystals with self-aligned microcrucibles on Si substrates,” J. Electrochem. Soc.152(8), G688–G693 (2005). [CrossRef]
  17. S. Assefa, F. Xia, S. W. Bedell, Y. Zhang, T. Topuria, P. M. Rice, and Y. A. Vlasov, “CMOS-integrated high-speed MSM germanium waveguide photodetector,” Opt. Express18(5), 4986–4999 (2010). [CrossRef] [PubMed]
  18. S. Assefa, F. Xia, and Y. A. Vlasov, “Reinventing Germanium avalanche photodetector for nanophotonic on-chip optical interconnects,” Nature464(7285), 80–84 (2010). [CrossRef] [PubMed]
  19. H.-Y. Yu, S. Ren, W. S. Jung, A. K. Okyay, D. A. B. Miller, and K. C. Saraswat, “High-efficiency p-i-n photodetectors on selective-area-grown Ge for monolithic integration,” IEEE Electron Device Lett.30(11), 1161–1163 (2009). [CrossRef]
  20. D. Y. Smith, E. Shiles, and M. Inokuti, “The Optical Properties of Metallic Aluminum,” in Handbook of Optical Contstants of Solids, Palik, E. D., ed. (Academic Press, 1985), Vol. 1, pp. 369–406.
  21. D. K. Schroder, R. N. Thomas, and J. C. Swartz, “Free carrier absorption in Silicon,” IEEE J. Solid-State Circuits13(1), 180–187 (1978). [CrossRef]
  22. H. A. Haus, Waves and Fields in Optoelectronics (Prentice Hall, 1983).
  23. M. Soltani, S. Yegnanarayanan, Q. Li, and A. Adibi, “Systematic engineering of waveguide-resonator coupling for silicon microring/microdisk/racetrack resonators: theory and experiment,” IEEE J. Quantum Electron.46(8), 1158–1169 (2010). [CrossRef]
  24. S. Jongthammanurak, J. Liu, K. Wada, D. D. Cannon, D. T. Danielson, D. Pan, L. C. Kimerling, and J. Michel, “Large electro-optic effect in tensile strained Ge-on-Si films,” Appl. Phys. Lett.89(16), 161115 (2006). [CrossRef]
  25. G. Roelkens, L. Liu, D. Liang, R. Jones, A. Fang, B. Koch, and J. Bowers, “III-V/silicon photonics for on-chip and inter-chip optical interconnects,” Laser Photon. Rev.4(6), 751–779 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited