OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 19 — Sep. 23, 2013
  • pp: 22464–22470

Phase measurement of fast light pulse in electromagnetically induced absorption

Yoon-Seok Lee, Hee Jung Lee, and Han Seb Moon  »View Author Affiliations


Optics Express, Vol. 21, Issue 19, pp. 22464-22470 (2013)
http://dx.doi.org/10.1364/OE.21.022464


View Full Text Article

Enhanced HTML    Acrobat PDF (984 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report the phase measurement of a fast light pulse in electromagnetically induced absorption (EIA) of the 5S1/2 (F = 2)–5P3/2 (F′ = 3) transition of 87Rb atoms. Using a beat-note interferometer method, a stable measurement without phase dithering of the phase of the probe pulse before and after it has passed through the EIA medium was achieved. Comparing the phases of the light pulse in air and that of the fast light pulse though the EIA medium, the phase of the fast light pulse at EIA resonance was not shifted and maintained to be the same as that of the free-space light pulse. The classical fidelity of the fast light pulse according to the advancement of the group velocity by adjusting the atomic density was estimated to be more than 97%.

© 2013 Optical Society of America

OCIS Codes
(270.1670) Quantum optics : Coherent optical effects
(270.5530) Quantum optics : Pulse propagation and temporal solitons

ToC Category:
Quantum Optics

History
Original Manuscript: July 24, 2013
Revised Manuscript: September 6, 2013
Manuscript Accepted: September 9, 2013
Published: September 16, 2013

Citation
Yoon-Seok Lee, Hee Jung Lee, and Han Seb Moon, "Phase measurement of fast light pulse in electromagnetically induced absorption," Opt. Express 21, 22464-22470 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-19-22464


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. K. J. Boller, A. Imamolu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett.66(20), 2593–2596 (1991). [CrossRef] [PubMed]
  2. A. M. Akulshin, S. Barreiro, and A. Lezama, “Electromagnetically induced absorption and transparency due to resonant two-field excitation of quasidegenerate levels in Rb vapor,” Phys. Rev. A57(4), 2996–3002 (1998). [CrossRef]
  3. C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature409(6819), 490–493 (2001). [CrossRef] [PubMed]
  4. I. Novikova, A. V. Gorshkov, D. F. Phillips, A. S. Sørensen, M. D. Lukin, and R. L. Walsworth, “Optimal Control of Light Pulse Storage and Retrieval,” Phys. Rev. Lett.98(24), 243602 (2007). [CrossRef] [PubMed]
  5. J. Appel, E. Figueroa, D. Korystov, M. Lobino, and A. I. Lvovsky, “Quantum Memory for Squeezed Light,” Phys. Rev. Lett.100(9), 093602 (2008). [CrossRef] [PubMed]
  6. K. S. Choi, H. Deng, J. Laurat, and H. J. Kimble, “Mapping photonic entanglement into and out of a quantum memory,” Nature452(7183), 67–71 (2008). [CrossRef] [PubMed]
  7. A. I. Lvovsky, B. C. Sanders, and W. Tittel, “Optical Quantum Memory,” Nat. Photonics3(12), 706–714 (2009). [CrossRef]
  8. A. M. Marino, R. C. Pooser, V. Boyer, and P. D. Lett, “Tunable delay of Einstein-Podolsky-Rosen entanglement,” Nature457(7231), 859–862 (2009). [CrossRef] [PubMed]
  9. K. Jensen, W. Wasilewski, H. Krauter, T. Fernholz, B. M. Nielsen, M. Owari, M. B. Plenio, A. Serafini, M. M. Wolf, and E. S. Polzik, “Quantum memory for entangled continuous-variable states,” Nat. Phys.7(1), 13–16 (2011). [CrossRef]
  10. H. P. Specht, C. Nölleke, A. Reiserer, M. Uphoff, E. Figueroa, S. Ritter, and G. Rempe, “A single-atom quantum memory,” Nature473(7346), 190–193 (2011). [CrossRef] [PubMed]
  11. Y.-H. Chen, M.-J. Lee, I.-C. Wang, S. Du, Y.-F. Chen, Y.-C. Chen, and I. A. Yu, “Coherent optical memory with high storage efficiency and large fractional delay,” Phys. Rev. Lett.110(8), 083601 (2013). [CrossRef] [PubMed]
  12. A. M. Steinberg, P. G. Kwiat, and R. Y. Chiao, “Measurement of the single-photon tunneling time,” Phys. Rev. Lett.71(5), 708–711 (1993). [CrossRef] [PubMed]
  13. Y. Aharonov, B. Reznik, and A. Stern, “Quantum Limitations on Superluminal Propagation,” Phys. Rev. Lett.81(11), 2190–2193 (1998). [CrossRef]
  14. A. Kuzmich, A. Dogariu, L. J. Wang, P. W. Milonni, and R. Y. Chiao, “Signal Velocity, Causality, and Quantum Noise in Superluminal Light Pulse Propagation,” Phys. Rev. Lett.86(18), 3925–3929 (2001). [CrossRef] [PubMed]
  15. L. J. Wang, A. Kuzmich, and A. Dogariu, “Gain-assisted superluminal light propagation,” Nature406(6793), 277–279 (2000). [CrossRef] [PubMed]
  16. M. D. Stenner, D. J. Gauthier, and M. A. Neifeld, “The speed of information in a ‘fast-light’ optical medium,” Nature425(6959), 695–698 (2003). [CrossRef] [PubMed]
  17. G. S. Agarwal and T. Nath Dey, “Causality in propagation of a pulse in a nonlinear dispersive medium,” J. Mod. Opt.52(10), 1449–1456 (2005). [CrossRef]
  18. R. W. Boyd and P. Narum, “Slow- and fast-light: fundamental limitations,” J. Mod. Opt.54(16-17), 2403–2411 (2007). [CrossRef]
  19. U. Vogl, R. T. Glasser, and P. D. Lett, “Advanced detection of information in optical pulses with negative group velocity,” Phys. Rev. A86(3), 031806 (2012). [CrossRef]
  20. Z. Yang, “Physical mechanism and information velocity of fast light: A time-domain analysis,” Phys. Rev. A87(2), 023801 (2013). [CrossRef]
  21. Y.-F. Chen, Y.-C. Liu, Z.-H. Tsai, S.-H. Wang, and I. A. Yu, “Beat-note interferometer for direct phase measurement of photonic information,” Phys. Rev. A72(3), 033812 (2005). [CrossRef]
  22. M. Lettner, M. Mücke, S. Riedl, C. Vo, C. Hahn, S. Baur, J. Bochmann, S. Ritter, S. Dürr, and G. Rempe, “Remote entanglement between a single atom and a Bose-Einstein condensate,” Phys. Rev. Lett.106(21), 210503 (2011). [CrossRef] [PubMed]
  23. S. Zhou, S. Zhang, C. Liu, J. F. Chen, J. Wen, M. M. T. Loy, G. K. L. Wong, and S. Du, “Optimal storage and retrieval of single-photon waveforms,” Opt. Express20(22), 24124–24131 (2012). [CrossRef] [PubMed]
  24. Y.-W. Cho and Y.-H. Kim, “Storage and retrieval of thermal light in warm atomic vapor,” Phys. Rev. A82(3), 033830 (2010). [CrossRef]
  25. I. H. Bae and H. S. Moon, “Transfer of photon number statistics from coupling light to stored and retrieved probe light,” Opt. Express20(24), 26308–26316 (2012). [CrossRef] [PubMed]
  26. G. M. Gehring, A. Schweinsberg, C. Barsi, N. Kostinski, and R. W. Boyd, “Observation of Backward PulsePropagation Through a Medium with a Negative Group Velocity,” Science312(5775), 895–897 (2006). [CrossRef] [PubMed]
  27. R. W. Boyd and D. J. Gauthier, “Controlling the Velocity of Light Pulses,” Science326(5956), 1074–1077 (2009). [CrossRef] [PubMed]
  28. L. Zhang, L. Zhan, K. Qian, J. Liu, Q. Shen, X. Hu, and S. Luo, “Superluminal Propagation at Negative Group Velocity in Optical Fibers Based on Brillouin Lasing Oscillation,” Phys. Rev. Lett.107(9), 093903 (2011). [CrossRef] [PubMed]
  29. A. Akulshin, S. Barreiro, and A. Lezama, “Steep anomalous dispersion in coherently prepared Rb vapor,” Phys. Rev. Lett.83(21), 4277–4280 (1999). [CrossRef]
  30. K. Kim, H. S. Moon, C. Lee, S. K. Kim, and J. B. Kim, “Observation of arbitrary group velocities of light from superluminal to subluminal on a single atomic transition line,” Phys. Rev. A68(1), 013810 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited