OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 19 — Sep. 23, 2013
  • pp: 22488–22503

Real-time calibration of laser absorption spectrometer using spectral correlation performed with an in-line gas cell

Clinton J. Smith, Wen Wang, and Gerard Wysocki  »View Author Affiliations

Optics Express, Vol. 21, Issue 19, pp. 22488-22503 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (2736 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A real-time drift correction and calibration method using spectral correlation based on a revolving in-line gas cell for laser-based spectroscopic trace-gas measurements has been developed and evaluated experimentally. This technique is relatively simple to implement in laser spectroscopy systems and assures long-term stability of trace-gas measurements by minimizing the effects of external sources of drift in real-time. Spectroscopic sensitivity sufficient for environmental monitoring and effective drift suppression has been achieved for long-term measurements of CO2 with a quantum cascade laser based spectrometer.

© 2013 OSA

OCIS Codes
(120.6200) Instrumentation, measurement, and metrology : Spectrometers and spectroscopic instrumentation
(300.1030) Spectroscopy : Absorption
(300.6340) Spectroscopy : Spectroscopy, infrared

ToC Category:

Original Manuscript: July 23, 2013
Revised Manuscript: September 9, 2013
Manuscript Accepted: September 9, 2013
Published: September 17, 2013

Clinton J. Smith, Wen Wang, and Gerard Wysocki, "Real-time calibration of laser absorption spectrometer using spectral correlation performed with an in-line gas cell," Opt. Express 21, 22488-22503 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. F. Tittel, D. Richter, and A. Fried, “Mid-Infrared Laser Applications in Spectroscopy,” in Solid-State Mid-Infrared Laser Sources (2003), pp. 458–529.
  2. M. S. Zahniser, D. D. Nelson, J. B. McManus, P. L. Kebabian, and D. Lloyd, “Measurement of Trace Gas Fluxes Using Tunable Diode Laser Spectroscopy [and Discussion],” Philos. Trans. R. Soc. London, Ser. A351(1696), 371–382 (1995). [CrossRef]
  3. D. R. Bowling, S. D. Sargent, B. D. Tanner, and J. R. Ehleringer, “Tunable diode laser absorption spectroscopy for stable isotope studies of ecosystem–atmosphere CO2 exchange,” Agric. For. Meteorol.118(1-2), 1–19 (2003). [CrossRef]
  4. A. Kosterev, G. Wysocki, Y. Bakhirkin, S. So, R. Lewicki, M. Fraser, F. Tittel, and R. F. Curl, “Application of quantum cascade lasers to trace gas analysis,” Appl. Phys. B90(2), 165–176 (2008). [CrossRef]
  5. D. D. Nelson, J. H. Shorter, J. B. McManus, and M. S. Zahniser, “Sub-part-per-billion detection of nitric oxide in air using a thermoelectrically cooled mid-infrared quantum cascade laser spectrometer,” Appl. Phys. B75(2-3), 343–350 (2002). [CrossRef]
  6. H. Schiff, G. Mackay, and J. Bechara, “The use of tunable diode laser absorption spectroscopy for atmospheric measurements,” Res. Chem. Intermed.20(3), 525–556 (1994). [CrossRef]
  7. A. A. Kosterev, F. K. Tittel, R. Köhler, C. Gmachl, F. Capasso, D. L. Sivco, A. Y. Cho, S. Wehe, and M. G. Allen, “Thermoelectrically Cooled Quantum-Cascade-Laser-Based Sensor for the Continuous Monitoring Of Ambient Atmospheric Carbon Monoxide,” Appl. Opt.41(6), 1169–1173 (2002). [CrossRef] [PubMed]
  8. A. L. Dunn, S. C. Wofsy, and A. H. Bright, “Landscape heterogeneity, soil climate, and carbon exchange in a boreal black spruce forest,” Ecol. Appl.19(2), 495–504 (2009). [CrossRef] [PubMed]
  9. C. D. Jones, P. Cox, and C. Huntingford, “Uncertainty in climate–carbon-cycle projections associated with the sensitivity of soil respiration to temperature,” Tellus B Chem. Phys. Meterol.55(2), 642–648 (2003). [CrossRef]
  10. K. Szlavecz, M. McCormick, L. Xia, J. Saunders, T. Morcol, D. Whigham, T. Filley, and C. Csuzdi, “Ecosystem effects of non-native earthworms in Mid-Atlantic deciduous forests,” Biol. Invasions13(5), 1165–1182 (2011). [CrossRef]
  11. P. Werle, “Accuracy and precision of laser spectrometers for trace gas sensing in the presence of optical fringes and atmospheric turbulence,” Appl. Phys. B102(2), 313–329 (2011). [CrossRef]
  12. P. Werle, R. Mücke, and F. Slemr, “The limits of signal averaging in atmospheric trace-gas monitoring by tunable diode-laser absorption spectroscopy (TDLAS),” Appl. Phys. B57, 131–139 (1993). [CrossRef]
  13. J. A. Silver and A. C. Slanton, “Optical interference fringe reduction in laser absorption experiments,” Appl. Opt.27(10), 1914–1916 (1988). [CrossRef] [PubMed]
  14. P. Weibring, D. Richter, A. Fried, J. G. Walega, and C. Dyroff, “Ultra-high-precision mid-IR spectrometer II: system description and spectroscopic performance,” Appl. Phys. B85(2-3), 207–218 (2006). [CrossRef]
  15. M. B. Frish, R. T. Wainner, M. C. Laderer, K. R. Parameswaran, D. M. Sonnenfroh, and M. A. Druy, “Precision and accuracy of miniature tunable diode laser absorption spectrometers,” in Proc. SPIE 8032, 803209 (2011), A. D. Mark, and A. C. Richard, eds. (2011).
  16. D. C. Scott, R. L. Herman, C. R. Webster, R. D. May, G. J. Flesch, and E. J. Moyer, “Airborne Laser Infrared Absorption Spectrometer (Alias-Ii) for In Situ Atmospheric Measurements of N2O, CH4, CO, HCl, and NO2 from Balloon or Remotely Piloted Aircraft Platforms,” Appl. Opt.38(21), 4609–4622 (1999). [CrossRef] [PubMed]
  17. C. R. Webster, “Brewster-plate spoiler: a novel method for reducing the amplitude of interference fringes that limit tunable-laser absorption sensitivities,” J. Opt. Soc. Am. B2(9), 1464–1470 (1985). [CrossRef]
  18. N. Goldstein, S. Adler-Golden, J. Lee, and F. Bien, “Measurement of molecular concentrations and line parameters using line-locked second harmonic spectroscopy with an AlGaAs diode laser,” Appl. Opt.31(18), 3409–3415 (1992). [CrossRef] [PubMed]
  19. J. B. McManus, M. S. Zahniser, J. D. D. Nelson, J. H. Shorter, S. Herndon, E. Wood, and R. Wehr, “Application of quantum cascade lasers to high-precision atmospheric trace gas measurements,” Opt. Eng.49(11), 111124 (2010).
  20. E. A. Kozlova and A. C. Manning, “Methodology and calibration for continuous measurements of biogeochemical trace gas and O2 concentrations from a 300-m tall tower in central Siberia,” Atmos. Meas. Tech.2(1), 205–220 (2009). [CrossRef]
  21. B. W. M. Moeskops, S. M. Cristescu, and F. J. M. Harren, “Sub-part-per-billion monitoring of nitric oxide by use of wavelength modulation spectroscopy in combination with a thermoelectrically cooled, continuous-wave quantum cascade laser,” Opt. Lett.31(6), 823–825 (2006). [CrossRef] [PubMed]
  22. C. Roller, K. Namjou, J. D. Jeffers, M. Camp, A. Mock, P. J. McCann, and J. Grego, “Nitric Oxide Breath Testing by Tunable-Diode Laser Absorption Spectroscopy: Application in Monitoring Respiratory Inflammation,” Appl. Opt.41(28), 6018–6029 (2002). [CrossRef] [PubMed]
  23. J. Chen, A. Hangauer, R. Strzoda, and M. C. Amann, “VCSEL-based calibration-free carbon monoxide sensor at 2.3 μm with in-line reference cell,” Appl. Phys. B102(2), 381–389 (2011). [CrossRef]
  24. K. Sun, L. Tao, D. J. Miller, M. A. Khan, and M. A. Zondlo, “Inline Multi-harmonic Calibration Method for Open-path Atmospheric Ammonia Measurements,” Appl. Phys. B110(2), 213–222 (2013). [CrossRef]
  25. C. J. Smith, M. A. Khan, M. A. Zondlo, and G. Wysocki, “In-Line Reference Cell for Real-Time Calibration of Laser Absorption Spectrometers,” in CLEO: Science and Innovations, OSA Technical Digest (online) (Optical Society of America, 2012)(2012), p. CW3B.1.
  26. J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum Cascade Laser,” Science264(5158), 553–556 (1994). [CrossRef] [PubMed]
  27. H. C. Liu, M. Buchanan, and Z. R. Wasilewski, “How good is the polarization selection rule for intersubband transitions?” Appl. Phys. Lett.72(14), 1682–1684 (1998). [CrossRef]
  28. L. S. Rothman, “The HITRAN Database.” http://www.cfa.harvard.edu/hitran/
  29. S. So, A. A. Sani, Z. Lin, F. Tittel, and G. Wysocki, “Demo abstract: Laser-based trace-gas chemical sensors for distributed wireless sensor networks,” in IPSN:ACM/IEEE International Conference on Information Processing in Sensor Networks (2009), pp. 427–428.
  30. C. J. Smith, S. So, L. Xia, S. Pitz, K. Szlavecz, D. Carlson, A. Terzis, and G. Wysocki, “Wireless laser spectroscopic sensor node for atmospheric CO2 monitoring—laboratory and field test,” Appl. Phys. B110(2), 241–248 (2013). [CrossRef]
  31. Y. J. Ma, M. Richards, M. Ghanem, Y. Guo, and J. Hassard, “Air pollution monitoring and mining based on sensor Grid in London,” Sensors (Basel Switzerland)8(6), 3601–3623 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited