OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 19 — Sep. 23, 2013
  • pp: 22523–22531

Spectral response of an upconversion detector and spectrometer

Paulina S. Kuo, Oliver Slattery, Yong-Su Kim, Jason S. Pelc, M. M. Fejer, and Xiao Tang  »View Author Affiliations


Optics Express, Vol. 21, Issue 19, pp. 22523-22531 (2013)
http://dx.doi.org/10.1364/OE.21.022523


View Full Text Article

Enhanced HTML    Acrobat PDF (1524 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We investigate the spectral response of an upconversion detector theoretically and experimentally, and discuss implications for its use as an infrared spectrometer. Upconversion detection is based on high-conversion-efficiency, sum-frequency generation (SFG). The spectral selectivity of an upconversion spectrometer is determined by the SFG spectral response function. This function changes with varying pump power. Working at maximum internal conversion efficiency is desirable for high sensitivity of the system, but the spectral response function is different at this pump power compared to the response function at low power. We calculate the theoretical spectral response of the upconversion detector as a function of pump power and obtain excellent agreement with upconversion spectra measured in a periodically poled LiNbO3 waveguide.

© 2013 OSA

OCIS Codes
(190.4360) Nonlinear optics : Nonlinear optics, devices
(190.4410) Nonlinear optics : Nonlinear optics, parametric processes
(300.6340) Spectroscopy : Spectroscopy, infrared

ToC Category:
Spectroscopy

History
Original Manuscript: June 17, 2013
Revised Manuscript: August 2, 2013
Manuscript Accepted: September 3, 2013
Published: September 17, 2013

Citation
Paulina S. Kuo, Oliver Slattery, Yong-Su Kim, Jason S. Pelc, M. M. Fejer, and Xiao Tang, "Spectral response of an upconversion detector and spectrometer," Opt. Express 21, 22523-22531 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-19-22523


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. P. Vandevender and P. G. Kwiat, “High efficiency single photon detection via frequency upconversion,” J. Mod. Opt.51, 1433–1445 (2004).
  2. C. Langrock, E. Diamanti, R. V. Roussev, Y. Yamamoto, M. M. Fejer, and H. Takesue, “Highly efficient single-photon detection at communication wavelengths by use of upconversion in reverse-proton-exchanged periodically poled LiNbO3waveguides,” Opt. Lett.30, 1725–1727 (2005). [CrossRef] [PubMed]
  3. L. Ma, O. Slattery, and X. Tang, “Single photon frequency up-conversion and its applications,” Phys. Rep.521, 69–94 (2012). [CrossRef]
  4. Q. Zhang, C. Langrock, M. M. Fejer, and Y. Yamamoto, “Waveguide-based single-pixel up-conversion infrared spectrometer,” Opt. Express16, 19557–19561 (2008). [CrossRef] [PubMed]
  5. L. Ma, O. Slattery, and X. Tang, “Experimental study of high sensitivity infrared spectrometer with waveguide-based upconversion detector1,” Opt. Express17, 14395–14404 (2009). [CrossRef] [PubMed]
  6. M. D. Eisaman, J. Fan, A. Migdall, and S. V. Polyakov, “Invited review article: Single-photon sources and detectors,” Rev. Sci. Instrum.82, 071101 (2011). [CrossRef] [PubMed]
  7. A. Restelli, J. C. Bienfang, and A. L. Migdall, “Single-photon detection efficiency up to 50% at 1310 nm with an InGaAs/InP avalanche diode gated at 1.25 GHz,” Appl. Phys. Lett.102, 141104 (2013). [CrossRef]
  8. A. E. Lita, A. J. Miller, and S. W. Nam, “Counting near-infrared single-photons with 95% efficiency,” Opt. Express16, 3032–3040 (2008). [CrossRef] [PubMed]
  9. J. S. Pelc, L. Ma, C. R. Phillips, Q. Zhang, C. Langrock, O. Slattery, X. Tang, and M. M. Fejer, “Long-wavelength-pumped upconversion single-photon detector at 1550 nm: performance and noise analysis,” Opt. Express19, 21445–21456 (2011). [CrossRef] [PubMed]
  10. G.-L. Shentu, J. S. Pelc, X.-D. Wang, Q.-C. Sun, M.-Y. Zheng, M. M. Fejer, Q. Zhang, and J.-W. Pan, “Ultralow noise up-conversion detector and spectrometer for the telecom band,” Opt. Express21, 13986–13991 (2013). [CrossRef] [PubMed]
  11. P. S. Kuo, J. S. Pelc, O. Slattery, Y.-S. Kim, M. M. Fejer, and X. Tang, “Reducing noise in single-photon-level frequency conversion,” Opt. Lett.38, 1310–1312 (2013). [CrossRef] [PubMed]
  12. Y. R. Shen, The Principles of Nonlinear Optics (Wiley, 1984), Chap. 6, pp. 67–85.
  13. M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron.28, 2631–2654 (1992). [CrossRef]
  14. J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev.127, 1918–1939 (1962). [CrossRef]
  15. K. R. Parameswaran, J. R. Kurz, R. V. Roussev, and M. M. Fejer, “Observation of 99% pump depletion in single-pass second-harmonic generation in a periodically poled lithium niobate waveguide,” Opt. Lett.27, 43–45 (2002). [CrossRef]
  16. R. L. Byer, “Optical parametric oscillators,” in Quantum Electronics: A Treatise, vol. I, Nonlinear Optics, Part B, H. Rabin and C. L. Tang, eds. (Academic Press, 1975), pp. 587–702.
  17. J. S. Pelc, P. S. Kuo, O. Slattery, L. Ma, X. Tang, and M. M. Fejer, “Dual-channel, single-photon upconversion detector at 1.3 μ m,” Opt. Express20, 19075–19087 (2012). [CrossRef] [PubMed]
  18. P. A. Jansson, Deconvolution: with applications in spectroscopy (Academic Press, 1984).
  19. J. S. Pelc, C. Langrock, Q. Zhang, and M. M. Fejer, “Influence of domain disorder on parametric noise in quasi-phase-matched quantum frequency converters,” Opt. Lett.35, 2804–2806 (2010). [CrossRef] [PubMed]
  20. M. H. Chou, J. Hauden, M. A. Arbore, and M. M. Fejer, “1.5-μ m-band wavelength conversion based on difference-frequency generation in LiNbO3waveguides with integrated coupling structures,” Opt. Lett.23, 1004–1006 (1998). [CrossRef]
  21. R. V. Roussev, “Optical-frequency mixers in periodically poled lithium niobate: materials, modeling and characterization,” Ph.D. thesis, Stanford University (2006).
  22. P. Kumar, “Quantum frequency conversion,” Opt. Lett.15, 1476–1478 (1990). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited