OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 19 — Sep. 23, 2013
  • pp: 22532–22539

Pulsed dipole radiation in a transformation-optics wedge waveguide designed by azimuthal space compression

Heungjoon Kim, Seung Pil Pack, Yun Yi, and Hwi Kim  »View Author Affiliations

Optics Express, Vol. 21, Issue 19, pp. 22532-22539 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (2512 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A transformation-optics wedge waveguide designed for the simultaneous collection and directional collimation of pulsed dipole radiation is described and tested with numerical simulation. Azimuthal compression of free space toward a narrow fan-shaped waveguide sector allows dipole pulse radiation in free space to be transformed into a directional non-dispersive pulse propagating within that sector. The collection and collimation ability of the proposed structure is compared with classical approaches using metallic wedge mirrors and parabolic mirrors, which inherently allow multiple internal reflections and thus generate significant pulse distortion and low light-collection efficiency. It is shown that the optical pulse generated by the dipole and propagated through the proposed transformation-optics waveguide maintains its original shape within the structure, and demonstrates enhanced optical power.

© 2013 OSA

OCIS Codes
(080.2710) Geometric optics : Inhomogeneous optical media
(220.2740) Optical design and fabrication : Geometric optical design
(260.1180) Physical optics : Crystal optics
(260.2110) Physical optics : Electromagnetic optics

ToC Category:
Physical Optics

Original Manuscript: May 20, 2013
Revised Manuscript: August 28, 2013
Manuscript Accepted: September 2, 2013
Published: September 17, 2013

Heungjoon Kim, Seung Pil Pack, Yun Yi, and Hwi Kim, "Pulsed dipole radiation in a transformation-optics wedge waveguide designed by azimuthal space compression," Opt. Express 21, 22532-22539 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. L. O’Brien, A. Furusawa, and J. Vučković, “Photonic quantum technologies,” Nat. Photonics3(12), 687–695 (2009). [CrossRef]
  2. A. J. Shields, “Semiconductor quantum light sources,” Nat. Photonics1(4), 215–223 (2007). [CrossRef]
  3. K. G. Lee, X. W. Chen, H. Eghlidi, P. Kukura, R. Lettow, A. Renn, V. Sandoghdar, and S. Gőtzinger, “A planar dielectric antenna for directional single-photon emission and near-unity collection efficiency,” Nat. Photonics5(3), 166–169 (2011). [CrossRef]
  4. N. Gregersen, P. Kaer, and J. Mørk, “Modeling and design of high-efficiency single-photon sources,” IEEE Sel. Top. Quantum Electron.19(5), 9000516 (2013). [CrossRef]
  5. Y. Ebenstein and L. A. Bentolila, “Single-molecule detection: Focusing on the objective,” Nat. Nanotechnol.5(2), 99–100 (2010). [CrossRef] [PubMed]
  6. S. McDaniel and S. Blair, “Increased OLED radiative efficiency using a directive optical antenna,” Opt. Express18(16), 17477–17483 (2010). [CrossRef] [PubMed]
  7. T. H. Taminiau, F. D. Stefani, F. B. Segerink, and N. F. Van Hulst, “Optical antennas direct single-molecule emission,” Nat. Photonics2(4), 234–237 (2008). [CrossRef]
  8. W. Y. Liang, J. W. Dong, and H. Z. Wang, “Directional emitter and beam splitter based on self-collimation effect,” Opt. Express15(3), 1234–1239 (2007). [CrossRef]
  9. R. Zhou, X. Chen, and W. Lu, “Strong focusing properties and far-field focus in the two-dimensional photonic-crystal-based concave lens,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.74(1), 016610 (2006). [CrossRef] [PubMed]
  10. O. Kidwai, S. V. Zhukovsky, and J. E. Sipe, “Dipole radiation near hyperbolic metamaterials: applicability of effective-medium approximation,” Opt. Lett.36(13), 2530–2532 (2011). [CrossRef] [PubMed]
  11. E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev.69, 681 (1946).
  12. E. Yablonovitch, “Inhibited Spontaneous Emission In Solid-State Physics And Electronics,” Phys. Rev. Lett.58(20), 2059–2062 (1987). [CrossRef] [PubMed]
  13. D. Schurig, J. B. Pendry, and D. R. Smith, “Calculation of material properties and ray tracing in transformation media,” Opt. Express14(21), 9794–9804 (2006). [CrossRef] [PubMed]
  14. J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science312(5781), 1780–1782 (2006). [CrossRef] [PubMed]
  15. U. Leonhardt, “Optical conformal mapping,” Science312(5781), 1777–1780 (2006). [CrossRef] [PubMed]
  16. U. Leonhardt, “Note on conformal invisibility devices,” New J. Phys.8(7), 118 (2006). [CrossRef]
  17. X. Xu, Y. Feng, Y. Hao, J. Zhao, and T. Jiang, “Infrared carpet cloak designed with uniform silicon gration structure,” Appl. Phys. Lett.95(18), 184102 (2009). [CrossRef]
  18. J. Li and J. B. Pendry, “Hiding under the Carpet: A New Strategy for Cloaking,” Phys. Rev. Lett.101(20), 203901 (2008). [CrossRef] [PubMed]
  19. M. Rahm, D. A. Roberts, J. B. Pendry, and D. R. Smith, “Transformation-optical design of adaptive beam bends and beam expanders,” Opt. Express16(15), 11555–11567 (2008). [CrossRef] [PubMed]
  20. D.-H. Kwon and D. H. Werner, “Polarization splitter and polarization rotator designs based on transformation optics,” Opt. Express16(23), 18731–18738 (2008). [CrossRef] [PubMed]
  21. B. Wang and K.-M. Huang, “Shaping the radiation pattern with mu and epsilon-near-zero metamaterials,” PIER106, 107–119 (2010). [CrossRef]
  22. J. J. Zhang, Y. Luo, S. Xi, H. S. Chen, L. X. Ran, B.-I. Wu, and J. A. Kong, “Directive emission obtained by coordinate transformation,” PIER81, 437–446 (2008). [CrossRef]
  23. P.-H. Tichit, S. N. Burokur, D. Germain, and A. de Lustrac, “Coordinate-transformation-based ultra-directive emission,” Electron. Lett.47(10), 580–582 (2011). [CrossRef]
  24. D. H. Kwon and D. H. Werner, “Transformation optical designs for wave collimators, flat lenses and right-angle bends,” New J. Phys.10(11), 115023 (2008). [CrossRef]
  25. D. H. Kwon and D. H. Werner, “Flat focusing lens designs having minimized reflection based on coordinate transformation techniques,” Opt. Express17(10), 7807–7817 (2009). [CrossRef] [PubMed]
  26. M. Schmiele, V. S. Varma, C. Rockstuhl, and F. Lederer, “Designing optical elements from isotropic materials by using transformation optics,” Phys. Rev. A81(3), 033837 (2010). [CrossRef]
  27. J. P. Turpin, A. T. Massoud, Z. H. Jiang, P. L. Werner, and D. H. Werner, “Conformal mappings to achieve simple material parameters for transformation optics devices,” Opt. Express18(1), 244–252 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited