OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 19 — Sep. 23, 2013
  • pp: 22540–22548

A one-dimensional tunable magnetic metamaterial

S. Butz, P. Jung, L. V. Filippenko, V. P. Koshelets, and A. V. Ustinov  »View Author Affiliations


Optics Express, Vol. 21, Issue 19, pp. 22540-22548 (2013)
http://dx.doi.org/10.1364/OE.21.022540


View Full Text Article

Enhanced HTML    Acrobat PDF (3720 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present experimental data on a one-dimensional super-conducting metamaterial that is tunable over a broad frequency band. The basic building block of this magnetic thin-film medium is a single-junction (rf-) superconducting quantum interference device (SQUID). Due to the nonlinear inductance of such an element, its resonance frequency is tunable in situ by applying a dc magnetic field. We demonstrate that this results in tunable effective parameters of our metamaterial consisting of 54 rf-SQUIDs. In order to obtain the effective magnetic permeability μr,eff from the measured data, we employ a technique that uses only the complex transmission coefficient S21.

© 2013 OSA

OCIS Codes
(310.2790) Thin films : Guided waves
(350.4010) Other areas of optics : Microwaves
(160.3918) Materials : Metamaterials

ToC Category:
Metamaterials

Citation
S. Butz, P. Jung, L. V. Filippenko, V. P. Koshelets, and A. V. Ustinov, "A one-dimensional tunable magnetic metamaterial," Opt. Express 21, 22540-22548 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-19-22540


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. C. Ricci, N. Orloff, and S. M. Anlage, “Superconducting metamaterials,” Appl. Phys. Lett.87, 034102 (2005). [CrossRef]
  2. M. C. Ricci, H. Xu, R. Prozorov, A. P. Zhuravel, A. V. Ustinov, and S. M. Anlage, “Tunability of Superconducting Metamaterials,” IEEE Trans. Appl. Supercond.17, 918–921 (2007). [CrossRef]
  3. J. Gu, R. Singh, Z. Tian, W. Cao, Q. Xing, M. He, J. W. Zhang, J. Han, H.-T. Chen, and W. Zhang, “Terahertz superconductor metamaterial,” Appl. Phys. Lett.97, 071102 (2010). [CrossRef]
  4. J. Wu, B. Jin, Y. Xue, C. Zhang, H. Dai, L. Zhang, C. Cao, L. Kang, W. Xu, J. Chen, and P. Wu, “Tuning of superconducting niobium nitride terahertz metamaterials,” Opt. Express19, 12021–12026 (2011). [CrossRef] [PubMed]
  5. N. Lazarides and G. P. Tsironis, “rf superconducting quantum interference device metamaterials,” Appl. Phys. Lett.90, 163501 (2007). [CrossRef]
  6. C. Du, H. Chen, and S. Li, “Stable and bistable SQUID metamaterials,” J. Phys.: Condens. Matter20, 345220 (2008). [CrossRef]
  7. A. I. Maimistov and I. R. Gabitov, “Nonlinear response of a thin metamaterial fim containing Josephson junction,” Optics Commun.283, 1633–1639 (2010). [CrossRef]
  8. D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett.84, 4184–4187 (2000). [CrossRef] [PubMed]
  9. P. Jung, S. Butz, S. V. Shitov, and A. V. Ustinov, “Low-loss tunable metamaterials using superconducting circuits with Josephson junctions,” Appl. Phys. Lett.102, 062601 (2013). [CrossRef]
  10. K. K. Likharev, Dynamics of Josephson Junctions(Gordon and Breach Science, 1991).
  11. M. Tinkham, Introduction to Superconductivity (2nd Edition) (Dover Publications Inc., 2004).
  12. S. Butz, P. Jung, L. V. Filippenko, V. P. Koshelets, and A. V. Ustinov, “Protecting SQUID metamaterials against stray magnetic field”, Supercond. Sci. Technol.26, 094003 (2013). [CrossRef]
  13. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Tech.41, 2075–2084 (1999). [CrossRef]
  14. J. Baker-Jarvis, M. D. Janezic, B. F. Riddle, R. T. Johnk, P. Kabos, C. L. Holloway, R. G. Geyer, and C. A. Grosvenor, “Measuring the permittivity and permeability of lossy materials: solids, liquids, metals, building materials, and negative-index materials,” NIST Technical Note1536 (Boulder, CO, USA), (2005).
  15. D. M. Pozar, Microwave Engineering (2nd Edition) (John Wiley & Sons Inc., 1998) pp. 208–211
  16. J.-H. Yeh and S. M. Anlage, “In situ broadband cryogenic calibration for two-port superconducting microwave resonators”, Rev. Sci. Instrum.84, 034706 (2013). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Multimedia

Multimedia FilesRecommended Software
» Media 1: PDF (89 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited