OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 19 — Sep. 23, 2013
  • pp: 22578–22595

Accelerated solution of the frequency-domain Maxwell’s equations by engineering the eigenvalue distribution of the operator

Wonseok Shin and Shanhui Fan  »View Author Affiliations

Optics Express, Vol. 21, Issue 19, pp. 22578-22595 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1565 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We introduce a simple method to accelerate the convergence of iterative solvers of the frequency-domain Maxwell’s equations for deep-subwavelength structures. Using the continuity equation, the method eliminates the high multiplicity of near-zero eigenvalues of the operator while leaving the operator nearly positive-definite. The impact of the modified eigenvalue distribution on the accelerated convergence is explained by visualizing residual vectors and residual polynomials.

© 2013 OSA

OCIS Codes
(000.3860) General : Mathematical methods in physics
(000.3870) General : Mathematics
(000.4430) General : Numerical approximation and analysis

ToC Category:
Physical Optics

Original Manuscript: July 26, 2013
Revised Manuscript: September 8, 2013
Manuscript Accepted: September 9, 2013
Published: September 18, 2013

Wonseok Shin and Shanhui Fan, "Accelerated solution of the frequency-domain Maxwell’s equations by engineering the eigenvalue distribution of the operator," Opt. Express 21, 22578-22595 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. N. J. Champagne, J. G. Berryman, and H. M. Buettner, “FDFD: A 3D finite-difference frequency-domain code for electromagnetic induction tomography,” J. Comput. Phys.170, 830–848 (2001). [CrossRef]
  2. G. Veronis and S. Fan, “Overview of simulation techniques for plasmonic devices,” in “Surface Plasmon Nanophotonics,” M. Brongersma and P. Kik, eds. (Springer, 2007), pp. 169–182. [CrossRef]
  3. U. S. Inan and R. A. Marshall, Numerical Electromagnetics: The FDTD Method (Cambridge University, 2011). Ch. 14. [CrossRef]
  4. J.-M. Jin, The Finite Element Method in Electromagnetics, 2nd ed. (Wiley, 2002).
  5. V. Simoncini and D. B. Szyld, “Recent computational developments in Krylov subspace methods for linear systems,” Numer. Linear Algebra Appl.14, 1–59 (2007). [CrossRef]
  6. W. Cai, W. Shin, S. Fan, and M. L. Brongersma, “Elements for plasmonic nanocircuits with three-dimensional slot waveguides,” Adv. Mater.22, 5120–5124 (2010). [CrossRef] [PubMed]
  7. G. Veronis and S. Fan, “Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides,” Appl. Phys. Lett.87, 131102–3 (2005). [CrossRef]
  8. L. Verslegers, P. Catrysse, Z. Yu, W. Shin, Z. Ruan, and S. Fan, “Phase front design with metallic pillar arrays,” Opt. Lett.35, 844–846 (2010). [CrossRef] [PubMed]
  9. J. T. Smith, “Conservative modeling of 3-D electromagnetic fields, Part II: Biconjugate gradient solution and an accelerator,” Geophys.61, 1319–1324 (1996). [CrossRef]
  10. G. A. Newman and D. L. Alumbaugh, “Three-dimensional induction logging problems, Part 2: A finite-difference solution,” Geophys.67, 484–491 (2002). [CrossRef]
  11. C. J. Weiss and G. A. Newman, “Electromagnetic induction in a generalized 3D anisotropic earth, Part 2: The LIN preconditioner,” Geophys.68, 922–930 (2003). [CrossRef]
  12. V. L. Druskin, L. A. Knizhnerman, and P. Lee, “New spectral Lanczos decomposition method for induction modeling in arbitrary 3-D geometry,” Geophys.64, 701–706 (1999). [CrossRef]
  13. E. Haber, U. M. Ascher, D. A. Aruliah, and D. W. Oldenburg, “Fast simulation of 3D electromagnetic problems using potentials,” J. Comput. Phys.163, 150–171 (2000). [CrossRef]
  14. J. Hou, R. Mallan, and C. Torres-Verdin, “Finite-difference simulation of borehole EM measurements in 3D anisotropic media using coupled scalar-vector potentials,” Geophys.71, G225–G233 (2006). [CrossRef]
  15. R. Hiptmair, F. Kramer, and J. Ostrowski, “A robust Maxwell formulation for all frequencies,” IEEE Trans. Magn.44, 682–685 (2008). [CrossRef]
  16. K. Beilenhoff, W. Heinrich, and H. Hartnagel, “Improved finite-difference formulation in frequency domain for three-dimensional scattering problems,” IEEE Trans. Microwave Theory Tech.40, 540–546 (1992). [CrossRef]
  17. A. Christ and H. L. Hartnagel, “Three-dimensional finite-difference method for the analysis of microwave-device embedding,” IEEE Trans. Microwave Theory Tech.35, 688–696 (1987). [CrossRef]
  18. At the final stage of our work, we were made aware of a related work by M. Kordy, E. Cherkaev, and P. Wannamaker, “Schelkunoff potential for electromagnetic field: proof of existence and uniqueness” (to be published), where an equation similar to our Eq. (7) with s= −1 was developed.
  19. A. Jennings, “Influence of the eigenvalue spectrum on the convergence rate of the conjugate gradient method,” IMA J. Appl. Math.20, 61–72 (1977). [CrossRef]
  20. A. van der Sluis and H. van der Vorst, “The rate of convergence of conjugate gradients,” Numer. Math.48, 543–560 (1986). [CrossRef]
  21. S. L. Campbell, I. C. F. Ipsen, C. T. Kelley, and C. D. Meyer, “GMRES and the minimal polynomial,” BIT Numer. Math.36, 664–675 (1996). [CrossRef]
  22. S. Goossens and D. Roose, “Ritz and harmonic Ritz values and the convergence of FOM and GMRES,” Numer. Linear Algebra Appl.6, 281–293 (1999). [CrossRef]
  23. M. Benzi, G. H. Golub, and J. Liesen, “Numerical solution of saddle point problems,” Acta Numer.14, 1–137 (2005). Sec. 9.2. [CrossRef]
  24. B. Beckermann and A. B. J. Kuijlaars, “Superlinear convergence of conjugate gradients,” SIAM J. Numer. Anal.39, 300–329 (2001). [CrossRef]
  25. B. Beckermann and A. B. J. Kuijlaars, “On the sharpness of an asymptotic error estimate for conjugate gradients,” BIT Numer. Math.41, 856–867 (2001). [CrossRef]
  26. O. Axelsson, “Iteration number for the conjugate gradient method,” Math. Comput. Simulat.61, 421–435 (2003). [CrossRef]
  27. J. P. Webb, “The finite-element method for finding modes of dielectric-loaded cavities,” IEEE Trans. Microwave Theory Tech.33, 635–639 (1985). [CrossRef]
  28. F. Kikuchi, “Mixed and penalty formulations for finite element analysis of an eigenvalue problem in electromagnetism,” Comput. Method Appl. Mech. Eng.64, 509–521 (1987). [CrossRef]
  29. D. A. White and J. M. Koning, “Computing solenoidal eigenmodes of the vector Helmholtz equation: a novel approach,” IEEE Trans. Magn.38, 3420–3425 (2002). [CrossRef]
  30. N. W. Ashcroft and N. D. Mermin, Solid State Physics, 1st ed. (SaundersCollege, 1976), Ch. 8.
  31. To obtain 8/Δmin2, take the first equation of Eq. (4.29) in [32] and then multiply the extra factor μ= μ0to account for the difference between Eq. (4.17a) in [32] and Eq. (1) in the present paper.
  32. W. Shin and S. Fan, “Choice of the perfectly matched layer boundary condition for frequency-domain Maxwell’s equations solvers,” J. Comput. Phys.231, 3406–3431 (2012). [CrossRef]
  33. Y. Saad and M. H. Schultz, “GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems,” SIAM J. Sci. Stat. Comp.7, 856–869 (1986). [CrossRef]
  34. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6, 4370–4379 (1972). [CrossRef]
  35. E. D. Palik, ed., Handbook of Optical Constants of Solids (Academic Press, 1985).
  36. D. R. Lide, ed., CRC Handbook of Chemistry and Physics, 88th ed. (CRC, 2007).
  37. R. Freund and N. Nachtigal, “QMR: a quasi-minimal residual method for non-hermitian linear systems,” Numer. Math.60, 315–339 (1991). [CrossRef]
  38. R. W. Freund, G. H. Golub, and N. M. Nachtigal, “Iterative solution of linear systems,” Acta Numer.1, 57–100 (1992). Secs. 2.4 and 3.3. [CrossRef]
  39. J. W. Goodman, Introduction to Fourier Optics(Roberts & Company Publishers, 2005), 3rd ed. Sec. 2.3.2.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited