OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 19 — Sep. 23, 2013
  • pp: 22645–22656

Cuticle structure of the scarab beetle Cetonia aurata analyzed by regression analysis of Mueller-matrix ellipsometric data

Hans Arwin, Torun Berlind, Blaine Johs, and Kenneth Järrendahl  »View Author Affiliations


Optics Express, Vol. 21, Issue 19, pp. 22645-22656 (2013)
http://dx.doi.org/10.1364/OE.21.022645


View Full Text Article

Acrobat PDF (2649 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Since one hundred years it is known that some scarab beetles reflect elliptically and near-circular polarized light as demonstrated by Michelson for the beetle Chrysina resplendens. The handedness of the polarization is in a majority of cases left-handed but also right-handed polarization has been found. In addition, brilliant colors with metallic shine are observed. The polarization and color effects are generated in the beetle exoskeleton, the so-called cuticle. The objective of this work is to demonstrate that structural parameters and materials optical functions of these photonic structures can be extracted by advanced modeling of spectral multi-angle Mueller-matrix data recorded from beetle cuticles. A dual-rotating compensator ellipsometer is used to record normalized Mueller-matrix data in the spectral range 400 – 800 nm at angles of incidence in the range 25–75°. Analysis of data measured on the scarab beetle Cetonia aurata are presented in detail. The model used in the analysis mimics a chiral nanostructure and is based on a twisted layered structure. Given the complexity of the nanostructure, an excellent fit between experimental and model data is achieved. The obtained model parameters are the spectral variation of the refractive indices of the cuticle layers and structural parameters of the chiral structure.

© 2013 OSA

OCIS Codes
(160.1190) Materials : Anisotropic optical materials
(310.6860) Thin films : Thin films, optical properties
(160.1585) Materials : Chiral media
(310.5448) Thin films : Polarization, other optical properties
(240.2130) Optics at surfaces : Ellipsometry and polarimetry

ToC Category:
Thin Films

History
Original Manuscript: June 13, 2013
Revised Manuscript: August 22, 2013
Manuscript Accepted: September 9, 2013
Published: September 18, 2013

Virtual Issues
Vol. 8, Iss. 10 Virtual Journal for Biomedical Optics

Citation
Hans Arwin, Torun Berlind, Blaine Johs, and Kenneth Järrendahl, "Cuticle structure of the scarab beetle Cetonia aurata analyzed by regression analysis of Mueller-matrix ellipsometric data," Opt. Express 21, 22645-22656 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-19-22645


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. A. R. Parker and D. McKenzie, “The cause of 50 million-year-old colour,” Proc. R. Soc.B270, S151–S153 (2003).
  2. O.M.F.R.S. Lord Rayleigh, “On the optical character of some brilliant animal colours,” Phil. Mag.6, 98–111 (1919).
  3. A. E. Seago, P. Brady, J.-P. Vigneron, and T. D. Schultz, “Gold bugs and beyond: a review of iridescence and structural colour mechanisms in beetlees (Coleoptera),” J. R. Soc. Interface6, S165–S184 (2009). [CrossRef]
  4. A. A. Michelson, “On metallic colouring in birds and insects,” Phil. Mag.21, 554–567 (1911).
  5. A. C. Neville and S. Caveney, “Scarabaeid beetle exocuticle as an optical analogue of cholesteric liquid crystals,” Biol. Rev.44, 531–562 (1969). [CrossRef] [PubMed]
  6. S. Caveney, “Cuticle reflectivity and optical activity in scarab beetles: the role of uric acid,” Proc. R. Soc. London, Ser. B178, 205–225 (1971). [CrossRef]
  7. D. H. Goldstein, “Polarization properties of Scarabaeidae,” Appl. Opt.45, 7944–7950 (2006). [CrossRef] [PubMed]
  8. I. Hodgkinson, S. Lowrey, L. Bourke, A. Parker, and M. W. McCall, “Mueller-matrix characterization of beetle cuticle: polarized and unpolarized reflections from representative architectures,” Appl. Opt.49, 4558–4567 (2010). [CrossRef] [PubMed]
  9. H. Arwin, R. Magnusson, J. Landin, and K. Järrendahl, “Chirality-induced polarization effects in the cuticle of scarab beetles: 100 years after Michelson,” Phil. Mag.92, 1583–1599 (2012). [CrossRef]
  10. J. D. Pye, “The distribution of circularly polarized light reflection in the Scarabaeoidea (Coleoptera),” Biol. J. Linnean Soc.100, 585–596 (2010). [CrossRef]
  11. A. B. T. Smith, D. C. Hawkins, and J. M. Heraty, “An overview of the classification and evolution of the major scarab beetle clades (Coleoptera: Scarabaeoidea) based on preliminary molecular analysis,” Coleopterists Soc. Monograph5, 35–46 (2006). [CrossRef]
  12. Y. Bouligand, “Twisted fibrous arrangements in biological materials and cholesteric mesophases,” Tissue & Cell4, 189–217 (1972). [CrossRef]
  13. T. Lenau and M. Barfoed, “Colours and metallic sheen in beetle shells - a biomimetic search for material structuring principles causing light interference,” Adv. Eng. Mat.10, 299–314 (2008). [CrossRef]
  14. G. E. Schröder-Turk, S. Wickham, H. Averdunk, F. Brink, J. D. Fitz Gerald, L. Poladian, M. C. J. Large, and S. T. Hyde, “The chiral structure of porous chitin within the wing-scales of Callophrys rubi,” J. Struct. Biol.174, 290–295 (2011). [CrossRef] [PubMed]
  15. M. Saba, M. Thie, M. D. Turner, S. T. Hyde, M. Gu, K. Grosse-Brauckmann, D. N. Neshev, K. Mecke, and G. E. Schröder-Turk, “Circular dichroism in biological photonic crystals and cubic chiral nets,” Phys. Rev. Lett.106, 103902 (2011). [CrossRef] [PubMed]
  16. Z. Montiel-González, G. Luna-Bárcenasa, and A. Mendoza-Galván, “Thermal behaviour of chitosan and chitin thin films studied by spectroscopic ellipsometry,” phys. stat. sol. (c)5, 1434–1437 (2008). [CrossRef]
  17. D. J. Brink and M. E. Lee, “Ellipsometry of diffractive insect reflectors,” Appl. Opt.35, 1950–1955 (1996). [CrossRef] [PubMed]
  18. D. J. Brink and M. E. Lee, “Thin-film biological reflectors: optical characterization of the Chrysiridia croesus moth,” Appl. Opt.37, 4213–4217 (1998). [CrossRef]
  19. S. Berthier, E. Charron, and A. Da Silva, “Determination of the cuticle index of the scales of the iridescent butterfly Morpho menelaus,” Opt. Comm.228, 349–356 (2003). [CrossRef]
  20. G. D. Bernard and W. H. Miller, “Interference filters in the corneas of Diptera” Invest. Ophthalmol7, 416–434 (1968). [PubMed]
  21. J. A. Noyes, P. Vukusic, and I. R. Hooper, “Experimental method for reliably establishing the refractive index of buprestid beetle exocuticle,” Opt. Expr.15, 4352–4358 (2007). [CrossRef]
  22. S. Yoshioka and S. Kinoshita, “Direct determination of the refractive index of natural multilayer systems,” Phys. Rev.E83, 051917 (2011).
  23. H. Fujiwara, Spectroscopic Ellipsometry: Principles and Applications (John Wiley & Sons, Ltd, 2007).
  24. L. De Silva, I. Hodgkinson, P. Murray, Q. H. Wu, M. Arnold, J. Leader, and A. McNaughton, “Natural and nanoengineered chiral reflectors: structural color of manuka beetles and titania coatings,” Electromagnetics25, 391–408 (2005). [CrossRef]
  25. D. J. Brink, N. G. van der Berg, L. C. Prinsloo, and I. J. Hodgkinson, “Unusual coloration in scarabaeid beetles,” J. Phys. D: Appl. Phys.40, 2189–2196 (2007). [CrossRef]
  26. J. P. Vigneron, M. Rassart, C. Vandenbem, V. Lousse, O. Deparis, L. P. Biró, D. Dedouaire, A. Cornet, and P. Defrance, “Spectral filtering of visible light by the cuticle of metallic woodboring beetles and microfabrication of a matching bioinspired material,” Phys. Rev. E73, 041905 (2006). [CrossRef]
  27. S. Lowrey, L. De Silva, I. Hodgkinson, and J. Leader, “Observation and modeling of polarized light from scarab beetles,” J. Opt. Soc. Am. A24, 2418–2425 (2007). [CrossRef]
  28. A. R. Parker, D. R. Mckenzie, and M. C. J. Large, “Multilayer reflectors in animals using green and gold beetles as contrasting examples,” J. Exp. Biol.201, 1307–1313 (1998).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited