OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 19 — Sep. 23, 2013
  • pp: 22657–22670

High quantum-efficiency photon-number-resolving detector for photonic on-chip information processing

Brice Calkins, Paolo L. Mennea, Adriana E. Lita, Benjamin J. Metcalf, W. Steven Kolthammer, Antia Lamas-Linares, Justin B. Spring, Peter C. Humphreys, Richard P. Mirin, James C. Gates, Peter G. R. Smith, Ian A. Walmsley, Thomas Gerrits, and Sae Woo Nam  »View Author Affiliations


Optics Express, Vol. 21, Issue 19, pp. 22657-22670 (2013)
http://dx.doi.org/10.1364/OE.21.022657


View Full Text Article

Enhanced HTML    Acrobat PDF (1408 KB) | SpotlightSpotlight on Optics





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The integrated optical circuit is a promising architecture for the realization of complex quantum optical states and information networks. One element that is required for many of these applications is a high-efficiency photon detector capable of photon-number discrimination. We present an integrated photonic system in the telecom band at 1550 nm based on UV-written silica-on-silicon waveguides and modified transition-edge sensors capable of number resolution and over 40 % efficiency. Exploiting the mode transmission failure of these devices, we multiplex three detectors in series to demonstrate a combined 79 % ± 2 % detection efficiency with a single pass, and 88 % ± 3 % at the operating wavelength of an on-chip terminal reflection grating. Furthermore, our optical measurements clearly demonstrate no significant unexplained loss in this system due to scattering or reflections. This waveguide and detector design therefore allows the placement of number-resolving single-photon detectors of predictable efficiency at arbitrary locations within a photonic circuit – a capability that offers great potential for many quantum optical applications. *Contribution of NIST, an agency of the U.S. government, not subject to copyright

© 2013 OSA

OCIS Codes
(030.5260) Coherence and statistical optics : Photon counting
(040.3780) Detectors : Low light level
(220.0220) Optical design and fabrication : Optical design and fabrication
(230.7390) Optical devices : Waveguides, planar
(270.5570) Quantum optics : Quantum detectors

ToC Category:
Detectors

History
Original Manuscript: May 24, 2013
Revised Manuscript: July 1, 2013
Manuscript Accepted: July 10, 2013
Published: September 18, 2013

Virtual Issues
September 19, 2013 Spotlight on Optics

Citation
Brice Calkins, Paolo L. Mennea, Adriana E. Lita, Benjamin J. Metcalf, W. Steven Kolthammer, Antia Lamas-Linares, Justin B. Spring, Peter C. Humphreys, Richard P. Mirin, James C. Gates, Peter G. R. Smith, Ian A. Walmsley, Thomas Gerrits, and Sae Woo Nam, "High quantum-efficiency photon-number-resolving detector for photonic on-chip information processing," Opt. Express 21, 22657-22670 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-19-22657


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. K. Irwin and G. Hilton, Cryogenic Particle Detection (Springer-Verlag, 2005), chap. Transition-Edge Sensors, pp. 63–150.
  2. A. Politi, M. J. Cryan, J. G. Rarity, S. Yu, and J. L. O’Brien, “Silica-on-silicon waveguide quantum circuits,” Science320, 646–649 (2008). [CrossRef] [PubMed]
  3. B. Smith, D. Kundys, N. L. Thomas-Peter, P. Smith, and I. Walmsley, “Phase-controlled integrated photonic quantum circuits,” Opt. Express17, 13516–13525 (2009). [CrossRef] [PubMed]
  4. B. J. Metcalf, N. Thomas-Peter, J. B. Spring, D. Kundys, M. A. Broome, P. Humphreys, X.-M. Jin, M. Barbieri, W. S. Kolthammer, J. C. Gates, B. J. Smith, N. K. Langford, P. G. R. Smith, and I. A. Walmsley, “Multiphoton quantum interference in a multiport integrated photonic device,” Nature Comm.4, 1356 (2013). [CrossRef]
  5. J. B. Spring, B. J. Metcalf, P. C. Humphreys, W. S. Kolthammer, X.-M. Jin, M. Barbieri, A. Datta, N. Thomas-Peter, N. K. Langford, D. Kundys, J. C. Gates, B. J. Smith, P. G. R. Smith, and I. A. Walmsley, “Boson sampling on a photonic chip,” Science339, 798–801 (2013). [CrossRef]
  6. A. B. U’Ren, C. Silberhorn, K. Banaszek, and I. A. Walmsley, “Efficient conditional preparation of high-fidelity single photon states for fiber-optic quantum networks,” Phys. Rev. Lett.93, 093601 (2004). [CrossRef]
  7. A. Eckstein, A. Christ, P. J. Mosley, and C. Silberhorn, “Highly efficient single-pass source of pulsed single-mode twin beams of light,” Phys. Rev. Lett.106, 13603 (2011). [CrossRef]
  8. P. J. Shadbolt, M. R. Verde, A. Peruzzo, A. Politi, A. Laing, M. Lobino, J. C. F. Matthews, M. G. Thompson, and J. L. O’Brien, “Generating, manipulating and measuring entanglement and mixture with a reconfigurable photonic circuit,” Nat. Photon.6, 45–49 (2011). [CrossRef]
  9. J. P. Sprengers, A. Gaggero, D. Sahin, S. Jahanmirinejad, G. Frucci, F. Mattioli, R. Leoni, J. Beetz, M. Lermer, M. Kamp, S. Höfling, R. Sanjines, and A. Fiore, “Waveguide superconducting single-photon detectors for integrated quantum photonic circuits,” Appl. Phys. Lett.99, 181110 (2011). [CrossRef]
  10. W. H. P. Pernice, C. Schuck, O. Minaeva, M. Li, G. N. Goltsman, A. V. Sergienko, and H. X. Tang, “High-speed and high-efficiency travelling wave single-photon detectors embedded in nanophotonic circuits,” Nature Comm.3, 1325 (2012). [CrossRef]
  11. T. Gerrits, N. Thomas-Peter, J. C. Gates, A. E. Lita, B. J. Metcalf, B. Calkins, N. A. Tomlin, A. E. Fox, A. Lamas-Linares, J. B. Spring, N. K. Langford, R. P. Mirin, P. G. R. Smith, I. A. Walmsley, and S. W. Nam, “On-chip, photon-number-resolving, telecommunication-band detectors for scalable photonic information processing,” Phys. Rev. A84, 060301 (2011). [CrossRef]
  12. R. H. Hadfield, “Single-photon detectors for optical quantum information applications,” Nat Photon3, 696–705 (2009). [CrossRef]
  13. A. E. Lita, A. J. Miller, and S. W. Nam, “Counting near-infrared single-photons with 95% efficiency,” Opt. Express16, 3032 (2008). [CrossRef] [PubMed]
  14. T. Gerrits, S. Glancy, T. S. Clement, B. Calkins, A. E. Lita, A. J. Miller, A. L. Migdall, S. W. Nam, R. P. Mirin, and E. Knill, “Generation of optical coherent-state superpositions by number-resolved photon subtraction from the squeezed vacuum,” Phys. Rev. A82, 031802 (2010). [CrossRef]
  15. A. Ourjoumtsev, R. Tualle-Brouri, J. Laurat, and P. Grangier, “Generating optical schroedinger kittens for quantum information processing,” Science312, 83–86 (2006). [CrossRef] [PubMed]
  16. J. S. Neergaard-Nielsen, B. M. Nielsen, C. Hettich, K. Molmer, and E. S. Polzik, “Generation of a superposition of odd photon number states for quantum information networks,” Phys. Rev. Lett.97, 083604/1–4 (2006). [CrossRef]
  17. K. Wakui, H. Takahashi, A. Furusawa, and M. Sasaki, “Photon subtracted squeezed states generated with periodically poled KTiOPO4,” Opt. Express15, 3568–3574 (2007). [CrossRef] [PubMed]
  18. H. Takahashi, K. Wakui, S. Suzuki, M. Taakeoka, K. Hayasaka, A. Furusawa, and M. Sasaki, “Generation of large-amplitude coherent-state superposition via ancilla-assisted photon-subtraction,” Phys. Rev. Lett.101, 233605/1–4 (2008). [CrossRef]
  19. D. Zauner, K. Kulstad, J. Rathje, and M. Svalgaard, “Directly uv-written silica-on-silicon planar waveguides with low insertion loss,” Electron. Lett.34, 1582–1584 (1998). [CrossRef]
  20. G. Emmerson, S. Watts, C. Gawith, V. Albanis, M. Ibsen, R. Williams, and P. Smith, “Fabrication of directly uv-written channel waveguides with simultaneously defined integral bragg gratings,” Electron. Lett.38, 1531–1532 (2002). [CrossRef]
  21. A. J. Miller, S. W. Nam, J. M. Martinis, and A. V. Sergienko, “Demonstration of a low-noise near-infrared photon counter with multiphoton discrimination,” Appl. Phys. Lett.83, 791–793 (2003). [CrossRef]
  22. B. Calkins, A. E. Lita, A. E. Fox, and S. W. Nam, “Faster recovery time of a hot-electron transition-edge sensor by use of normal metal heat-sinks,” Appl. Phys. Lett.99, 241114 (2011). [CrossRef]
  23. G. Wiedemann and R. Franz, “Ueber die waerme-leitungsfaehigkeit der metalle,” Annalen der Physik165, 497–531 (1853). [CrossRef]
  24. C. Kittel, Introduction to Solid State Physics (John Wiley & Sons, Inc., 2005), 8th ed.
  25. B. Cabrera, “Introduction to tes physics,” J. Low Temp. Phys.151, 82 (2008). [CrossRef]
  26. P. M. Echternach, M. R. Thoman, C. M. Gould, and H. M. Bozler, “Electron-phonon scattering rates in disordered metallic films below 1 k,” Phys. Rev. B46, 10339 (1980). [CrossRef]
  27. Value is based on experimentally measured low-temperature normal resistance of ≈ 10 Ω for a 20 nm thick square device. Note that this is for a W film that consists of a mixture of crystallographic phases and is not typical for bulk W.
  28. C. Y. Ho, R. W. Powell, and P. E. Liley, Thermal Conductivity of the Elements: A Comprehensive Review (American Chemical Society).
  29. P. J. Feenan, A. Myers, and D. Sang, “De haas-van alphen measurements of the electron cyclotron mass in w,” Solid State Commun.16, 35–39 (1975). [CrossRef]
  30. N. A. D. Mermin, Solid State Physics (Saunders College Publishing, 1976).
  31. We assume a typical simple model for the noise spectrum of the device as per Ref [1]. We find experimentally that this model fits reasonably well, although a more sophisticated approach will be necessary to describe the noise of these devices exactly.
  32. A. J. Miller, A. E. Lita, B. Calkins, I. Vayshenker, S. M. Gruber, and S. W. Nam, “Compact cryogenic self-aligning fiber-to-detector coupling with losses below one percent,” Opt. Express19, 9102–9110 (2011). [CrossRef] [PubMed]
  33. H. L. Rogers, S. Ambran, C. Holmes, P. G. R. Smith, and J. C. Gates, “In situ loss measurement of direct uv-written waveguides using integrated bragg gratings,” Opt. Lett.35, 2849–2851 (2010). [CrossRef] [PubMed]
  34. The uncertainties quoted for the individual detector efficiencies include only the standard deviation of experimentally measured values, whereas the combined results also include the 1−σ uncertainty due to the calibration of the optical setup.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited