OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 19 — Sep. 23, 2013
  • pp: 22683–22692

Absorption engineering of NbN nanowires deposited on silicon nitride nanophotonic circuits

V. Kovalyuk, W. Hartmann, O. Kahl, N. Kaurova, A. Korneev, G. Goltsman, and W. H. P. Pernice  »View Author Affiliations

Optics Express, Vol. 21, Issue 19, pp. 22683-22692 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (7660 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We investigate the absorption properties of U-shaped niobium nitride (NbN) nanowires atop nanophotonic circuits. Nanowires as narrow as 20nm are realized in direct contact with Si3N4 waveguides and their absorption properties are extracted through balanced measurements. We perform a full characterization of the absorption coefficient in dependence of length, width and separation of the fabricated nanowires, as well as for waveguides with different cross-section and etch depth. Our results show excellent agreement with finite-element analysis simulations for all considered parameters. The experimental data thus allows for optimizing absorption properties of emerging single-photon detectors co-integrated with telecom wavelength optical circuits.

© 2013 OSA

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(160.1050) Materials : Acousto-optical materials
(220.4241) Optical design and fabrication : Nanostructure fabrication

ToC Category:
Integrated Optics

Original Manuscript: July 23, 2013
Revised Manuscript: September 9, 2013
Manuscript Accepted: September 11, 2013
Published: September 19, 2013

V. Kovalyuk, W. Hartmann, O. Kahl, N. Kaurova, A. Korneev, G. Goltsman, and W. H. P. Pernice, "Absorption engineering of NbN nanowires deposited on silicon nitride nanophotonic circuits," Opt. Express 21, 22683-22692 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Gondarenko, J. S. Levy, and M. Lipson, “High confinement micron-scale silicon nitride high Q ring resonator,” Opt. Express17(14), 11366–11370 (2009). [CrossRef] [PubMed]
  2. Y. Okawachi, K. Saha, J. S. Levy, Y. H. Wen, M. Lipson, and A. L. Gaeta, “Octave-spanning frequency comb generation in a silicon nitride chip,” Opt. Lett.36(17), 3398–3400 (2011). [CrossRef] [PubMed]
  3. C. Xiong, W. H. P. Pernice, K. K. Ryu, C. Schuck, K. Y. Fong, T. Palacios, and H. X. Tang, “Integrated GaN photonic circuits on silicon (100) for second harmonic generation,” Opt. Express19(11), 10462–10470 (2011). [CrossRef] [PubMed]
  4. Y. Zhang, L. McKnight, E. Engin, I. M. Watson, M. J. Cryan, E. Gu, M. G. Thompson, S. Calvez, J. L. O’Brien, and M. D. Dawson, “GaN directional couplers for integrated quantum photonics,” Appl. Phys. Lett.99(16), 161119 (2011). [CrossRef]
  5. C. Xiong, W. H. P. Pernice, X. Sun, C. Schuck, K. Y. Fong, and H. X. Tang, “Aluminum nitride as a new material for chip-scale optomechanics and nonlinear optics,” New J. Phys.14(9), 095014 (2012). [CrossRef]
  6. M.-C. Tien, J. F. Bauters, M. J. R. Heck, D. T. Spencer, D. J. Blumenthal, and J. E. Bowers, “Ultra-high quality factor planar Si3N4 ring resonators on Si substrates,” Opt. Express19(14), 13551–13556 (2011). [CrossRef] [PubMed]
  7. E. S. Hosseini, S. Yegnanarayanan, A. H. Atabaki, M. Soltani, and A. Adibi, “High quality planar silicon nitride microdisk resonators for integrated photonics in the visible wavelength range,” Opt. Express17(17), 14543–14551 (2009). [CrossRef] [PubMed]
  8. B. M. Zwickl, W. E. Shanks, A. M. Jayich, C. Yang, A. C. Bleszynski Jayich, J. D. Thompson, and J. G. E. Harris, “High quality mechanical and optical properties of commercial silicon nitride membranes,” Appl. Phys. Lett.92(10), 103125 (2008). [CrossRef]
  9. B. Bhushan, Springer Handbook of Nanotechnology, 2nd ed. (Springer-Verlag, Heidelberg, 2007).
  10. W. H. P. Pernice, C. Schuck, O. Minaeva, M. Li, G. N. Goltsman, A. V. Sergienko, and H. X. Tang, “High-speed and high-efficiency travelling wave single-photon detectors embedded in nanophotonic circuits,” Nat Commun3, 1325 (2012). [CrossRef] [PubMed]
  11. C. Shuck, W. H. P. Pernice, O. Minaeva, M. Li, G. N. Goltsman, A. V. Sergienko, and H. X. Tang, “Matrix of integrated superconducting single-photon detectors with high timing resolution,” IEEE Trans. Appl. Supercond.23(3), 2201007 (2013). [CrossRef]
  12. J. P. Sprengers, A. Gaggero, D. Sahin, S. Jahanmirinejad, G. Frucci, F. Mattioli, R. Leoni, J. Beetz, M. Lermer, M. Kamp, S. Hofling, R. Sanjines, and A. Fiore, “Waveguide superconducting single-photon detectors for integrated quantum photonic circuits,” Appl. Phys. Lett.99(18), 181110 (2011). [CrossRef]
  13. R. H. Hadfield, M. J. Stevens, S. S. Gruber, A. J. Miller, R. E. Schwall, R. P. Mirin, and S. W. Nam, “Single photon source characterization with a superconducting single photon detector,” Opt. Express13(26), 10846–10853 (2005). [CrossRef] [PubMed]
  14. R. E. Correa, E. A. Dauler, G. Nair, S. H. Pan, D. Rosenberg, A. J. Kerman, R. J. Molnar, X. Hu, F. Marsili, V. Anant, K. K. Berggren, and M. G. Bawendi, “Single photon counting from individual nanocrystals in the infrared,” Nano Lett.12(6), 2953–2958 (2012). [CrossRef] [PubMed]
  15. P. Eraerds, M. Legre, J. Zhang, H. Zbinden, and N. J. Gisin, “Photon counting OTDR: advantages and limitations,” J. Lightwave Technol.28(6), 952–964 (2010). [CrossRef]
  16. O. V. Minaeva, A. Fraine, A. Sergienko, A. Korneev, A. Divochiy, and G. Goltsman, “High resolution optical time-domain reflectometry using superconducting single-photon detectors,” Frontiers in Optics 2012/Laser Science XXVIII, OSA Technical Digest (online) (Optical Society of America, 2012), paper FW3A.39.
  17. C. Shuck, W. H. P. Pernice, X. Ma, and H. X. Tang, “Optical time domain reflectometry with low noise waveguide-coupled superconducting nanowire single-photon detectors,” Appl. Phys. Lett.102(19), 191104 (2013). [CrossRef]
  18. N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys.74(1), 145–195 (2002). [CrossRef]
  19. H. Takesue, S. W. Nam, Q. Zhang, R. H. Hadfield, T. Honjo, K. Tamaki, and Y. Yamamoto, “Quantum key distribution over a 40-dB channel loss using superconducting single-photon detectors,” Nat. Photonics1(6), 343–348 (2007). [CrossRef]
  20. G. N. Goltsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolevski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett.79(6), 705–707 (2001). [CrossRef]
  21. A. Korneev, Y. Vachtomin, O. Minaeva, A. Divochiy, K. Smirnov, O. Okunev, G. Goltsman, C. Zioni, N. Chauvin, L. Balet, F. Marsili, D. Bitauld, B. Alloing, L. Li, A. Fiore, L. Lunghi, A. Gerardino, M. Halder, C. Jorel, and H. Zbinden, “Single-Photon Detection System for Quantum Optics Applications,” IEEE J. Sel. Top. Quantum Electron.13(4), 944–951 (2007). [CrossRef]
  22. A. Semenov, G. Goltsman, and A. Korneev, “Quantum detection by current carrying superconducting film,” Physica C351(4), 349–356 (2001). [CrossRef]
  23. C. Schuck, W. H. P. Pernice, and H. X. Tang, “Waveguide integrated low noise NbTiN nanowire single-photon detectors with milli-Hz dark count rate,” Sci Rep3, 1893 (2013). [CrossRef] [PubMed]
  24. A. J. Kerman, E. A. Dauler, W. E. Keicher, J. K. W. Yang, K. K. Berggren, G. Gol’tsman, and B. Voronov, “Kinetic-inductance-limited reset time of superconducting nanowire photon counters,” Appl. Phys. Lett.88(11), 111116 (2006). [CrossRef]
  25. Y. Korneeva, I. Florya, A. Semenov, A. Korneev, and G. Goltsman, “New generation of nanowire NbN superconducting single-photon detector for mid-infrared,” IEEE Trans. Appl. Supercond. 21(3), 12022857 (2011).
  26. X. Hu, “Efficient superconducting-nanowire single-photon detectors and their applications in quantum optics” PhD thesis, MIT (2011), http://hdl.handle.net/1721.1/63073

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited