OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 19 — Sep. 23, 2013
  • pp: 22693–22698

A continuous wave 10 W cryogenic fiber amplifier at 1015 nm and frequency quadrupling to 254 nm

R. Steinborn, A. Koglbauer, P. Bachor, T. Diehl, D. Kolbe, M. Stappel, and J. Walz  »View Author Affiliations

Optics Express, Vol. 21, Issue 19, pp. 22693-22698 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1074 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A stable, continuous wave, single frequency fiber amplifier system at 1015 nm with 10 W output power is presented. It is based on a large mode double clad fiber cooled to liquid nitrogen temperature. The amplified light is frequency quadrupled to 254 nm and used for spectroscopy of the 61S → 63P transition in mercury.

© 2013 OSA

OCIS Codes
(060.2320) Fiber optics and optical communications : Fiber optics amplifiers and oscillators
(140.3610) Lasers and laser optics : Lasers, ultraviolet
(190.2620) Nonlinear optics : Harmonic generation and mixing
(300.6360) Spectroscopy : Spectroscopy, laser
(140.3515) Lasers and laser optics : Lasers, frequency doubled

ToC Category:
Lasers and Laser Optics

Original Manuscript: July 22, 2013
Revised Manuscript: August 20, 2013
Manuscript Accepted: August 23, 2013
Published: September 19, 2013

R. Steinborn, A. Koglbauer, P. Bachor, T. Diehl, D. Kolbe, M. Stappel, and J. Walz, "A continuous wave 10 W cryogenic fiber amplifier at 1015 nm and frequency quadrupling to 254 nm," Opt. Express 21, 22693-22698 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. V. Seletskiy, S. D. Melgaard, S. Bigotta, A. D. Lieto, M. Tonelli, and M. Sheik-Bahae, “Laser cooling of solids to cryogenic temperatures,” Nat. Phot.4, 161–164 (2010). [CrossRef]
  2. T. R. Gosnell, “Laser cooling of a solid by 65K starting from room temperature,” Opt. Lett.24, 1041–1043 (1999). [CrossRef]
  3. L. Yi, S. Mejri, J. J. McFerran, Y. Le Coq, and S. Bize, “Optical lattice trapping of 199Hg and determination of the magic wavelength for the ultraviolet 1S0 ↔ 3P0 clock transition,” Phys. Rev. Lett.106, 073005 (2011). [CrossRef]
  4. P. Villwock, S. Siol, and T. Walther, “Magneto-optical trapping of neutral mercury,” Eur. Phys. J. D65, 251–255 (2011). [CrossRef]
  5. G. Gabrielse, R. Kalra, W. S. Kolthammer, R. McConnell, P. Richerme, D. Grzonka, W. Oelert, T. Sefzick, M. Zielinski, D.W. Fitzakerley, M. C. George, E. A. Hessels, C. H. Storry, M. Weel, A. Müllers, and J. Walz, “Trapped antihydrogen in its ground state,” Phys. Rev. Lett.108, 113002 (2012). [CrossRef] [PubMed]
  6. F. Schmidt-Kaler, T. Feldker, D. Kolbe, J. Walz, M. Müller, P. Zoller, W. Li, and I. Lesanovsky, “Rydberg excitation of trapped cold ions: a detailed case study,” New. J. Phys.13, 075014 (2011). [CrossRef]
  7. J. Alnis, U. Gustafsson, G. Somesfalean, and S. Svanberg, “Sum-frequency generation with a blue diode laser for mercury spectroscopy at 254 nm,” Appl. Phys. Lett.76, 1234–1236 (2000). [CrossRef]
  8. D. M. Harber and M. V. Romalis, “Measurement of the scalar Stark shift of the 61S0 → 63P1 transition in Hg,” Phys. Rev. A63, 013402 (2000). [CrossRef]
  9. D. Kolbe, M. Scheid, and J. Walz, “Triple resonant four-wave mixing boosts the yield of continuous coherent vacuum ultraviolet generation,” Phys. Rev. Lett.109, 063901 (2012). [CrossRef] [PubMed]
  10. D. Kolbe, A. Beczkowiak, T. Diehl, A. Koglbauer, A. Müllers, M. Scheid, M. Stappel, R. Steinborn, and J. Walz, “Continuous Lyman-alpha generation by four-wave mixing in mercury for laser-cooling of antihydrogen,” Can. J. Phys.89, 25–28 (2011). [CrossRef]
  11. M. Scheid, D. Kolbe, F. Markert, T. W. Hänsch, and J. Walz, “Continuous-wave Lyman-α generation with solid-state lasers,” Opt. Express17, 11274–11280 (2009). [CrossRef] [PubMed]
  12. M. Scheid, F. Markert, J. Walz, J. Wang, M. Kirchner, and T. W. Hänsch, “750 mW continuous-wave solid-state deep ultraviolet laser source at the 253.7 nm transition in mercury,” Opt. Lett.32, 955–957 (2007). [CrossRef] [PubMed]
  13. Y. Jeong, J. Nilsson, J. K. Sahu, D. B. S. Soh, C. Alegria, P. Dupriez, C. A. Codemard, D. N. Payne, R. Horley, L. M. B. Hickey, L. Wanzcyk, C. E. Chryssou, J. A. Alvarez-Chavez, and P. W. Turner, “Single-frequency, single-mode, plane-polarized ytterbium-doped fiber master oscillator power amplifier source with 264 W of output power,” Opt. Lett.30, 459–461 (2005). [CrossRef] [PubMed]
  14. E. Desurvire, Erbium-doped Fiber Amplifiers: Principles and Applications (Wiley, New York, 1994).
  15. Y. Jeong, J. Sahu, D. Payne, and J. Nilsson, “Ytterbium-doped large-core fiber laser with 1.36 kW continuous-wave output power,” Opt. Express12, 6088–6092 (2004). [CrossRef] [PubMed]
  16. M. Stappel, R. Steinborn, D. Kolbe, and J. Walz, “A high power, continuous-wave, single-frequency fiber amplifier at 1091 nm and frequency doubling to 545.5 nm,” Laser Phys.23, 075103 (2013). [CrossRef]
  17. M. Hildebrandt, M. Frede, and D. Kracht, “Narrow-linewidth ytterbium-doped fiber amplifier system with 45 nm tuning range and 133 W of output power,” Opt. Lett.32, 2345–2347 (2007). [CrossRef] [PubMed]
  18. L. Goldberg, J. P. Koplow, and D. A. V. Kliner, “Highly efficient 4-W Yb-doped fiber amplifier pumped by a broad-stripe laser diode,” Opt. Lett.24, 673–675 (1999). [CrossRef]
  19. A. Shirakawa, H. Maruyama, K. Ueda, C. B. Olausson, J. K. Lyngs, and J. Broeng, “High-power Yb-doped photonic bandgap fiber amplifier at 1150–1200 nm,” Opt. Express17, 447–454 (2009). [CrossRef] [PubMed]
  20. R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, “Ytterbium-doped fiber amplifiers,” IEEE J. Quantum Electron.33, 1049–1056 (1997). [CrossRef]
  21. A. Seifert, M. Sinther, T. Walther, and E. S. Fry, “Narrow-linewidth, multi-Watt Yb-doped fiber amplifier at 1014.8 nm,” Appl. Opt.45, 7908–7911 (2006). [CrossRef] [PubMed]
  22. T. C. Newell, P. Peterson, A. Gavrielides, and M. P. Sharma, “Temperature effects on the emission properties of Yb-doped optical fibers,” Opt. Commun.273, 256–259 (2007). [CrossRef]
  23. H. M. Pask, R. J. Carman, D. C. Hanna, A. C. Tropper, C. J. Mackechnie, P. R. Barber, and J. M. Dawes, “Ytterbium-doped silica fiber lasers: versatile sources for the 1–1.2 μm region,” IEEE J. Quantum Electron.1, 2–13 (1995). [CrossRef]
  24. W. G. Schweitzer, “Hyperfine structure and isotope shifts in the 2537-Å line of mercury by a new interferometric method,” J. Opt. Soc. Am.53, 1055–1071 (1963). [CrossRef]
  25. M. G. Zadnik, S. Specht, and F. Begemann, “Revised isotopic composition of terrestrial mercury,” Int. J. Mass Spectrom.89, 103–110 (1989). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited