OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 19 — Sep. 23, 2013
  • pp: 22717–22727

Highly-efficient fully resonant vertical couplers for InP active-passive monolithic integration using vertically phase matched waveguides

Óscar García López, Daniel Lasaosa, Manuel López-Amo, and Marko Galarza  »View Author Affiliations

Optics Express, Vol. 21, Issue 19, pp. 22717-22727 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (2817 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A new active-passive monolithic integration approach for photonic components based on vertical evanescent coupling is presented. Two vertically stacked waveguides are used in order to provide full resonant power transfer between them and avoiding the need of tapered structures. Light confinement in each waveguide is achieved combining strong lateral asymmetric structures and bent waveguides, both defined during lithography. Low propagation losses for the active waveguide and coupling efficiencies to the passive section as high as 97% have been obtained.

© 2013 OSA

OCIS Codes
(130.0130) Integrated optics : Integrated optics
(130.3120) Integrated optics : Integrated optics devices

ToC Category:
Integrated Optics

Original Manuscript: July 11, 2013
Revised Manuscript: August 27, 2013
Manuscript Accepted: August 27, 2013
Published: September 19, 2013

Óscar García López, Daniel Lasaosa, Manuel López-Amo, and Marko Galarza, "Highly-efficient fully resonant vertical couplers for InP active-passive monolithic integration using vertically phase matched waveguides," Opt. Express 21, 22717-22727 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. D. Meindl, Q. Chen, and J. A. Davis, “Limits on silicon nanoelectronics for terascale integration,” Science293(5537), 2044–2049 (2001). [CrossRef] [PubMed]
  2. M. Lundstrom, “Applied physics. Moore’s law forever?” Science299(5604), 210–211 (2003). [CrossRef] [PubMed]
  3. D. J. Blumenthal, J. Barton, N. Beheshti, J. E. Bowers, E. Burmeister, L. A. Coldren, M. Dummer, G. Epps, A. Fang, Y. Ganjali, J. Garcia, B. Koch, V. Lal, E. Lively, J. Mack, M. Mašanović, N. McKeown, K. Nguyen, S. C. Nicholes, B. Hyundai Park, A. Stamenic, H. Tauke-Pedretti, Poulsen, and M. Sysak, “Integrated photonics for low-power packet networking,” IEEE J. Sel. Top. Quantum Electron.17(2), 458–471 (2011). [CrossRef]
  4. D. Liang and J. E. Bowers, “Photonic integration: Si or InP substrates?” Electron. Lett.45(12), 578–581 (2009). [CrossRef]
  5. C. Cole, B. Huebner, and J. E. Johnson, “Photonic integration for high-volume, low-cost applications,” IEEE Commun. Mag.47(3), S16–S22 (2009). [CrossRef]
  6. R. Nagarajan, C. H. Joyner, R. P. Schneider, J. S. Bostak, T. Butrie, A. G. Dentai, V. G. Dominic, P. W. Evans, M. Kato, M. Kauffman, D. J. H. Lambert, S. K. Mathis, A. Mathur, R. H. Miles, M. L. Mitchell, M. J. Missey, S. Murthy, A. C. Nilsson, F. H. Peters, S. C. Pennypacker, J. L. Pleumeekers, R. A. Salvatore, R. K. Schlenker, R. B. Taylor, M. F. Huan-Shang Tsai, J. Van Leeuwen, M. Webjorn, D. Ziari, J. Perkins, S. G. Singh, M. S. Grubb, D. G. Reffle, F. A. Mehuys, Kish, and D. F. Welch, “Large-scale photonic integrated circuits,” IEEE J. Sel. Top. Quantum Electron.11(1), 50–65 (2005). [CrossRef]
  7. G. Grasso, P. Galli, M. Romagnoli, E. Iannone, and A. Bogoni, “Role of integrated photonics technologies in the realization of terabit nodes [Invited],” J. Opt. Commun. Netw.1(3), B111–B119 (2009). [CrossRef]
  8. J. J. G. M. Van Der Tol, Y. S. Oei, U. Khalique, R. Ntzel, and M. K. Smit, “InP-based photonic circuits: Comparison of monolithic integration techniques,” Prog. Quantum Electron.34(4), 135–172 (2010). [CrossRef]
  9. R. Nagarajan, M. Kato, J. Pleumeekers, P. Evans, S. Corzine, S. Hurtt, A. Dentai, S. Murthy, M. Missey, R. Muthiah, R. A. Salvatore, C. Joyner, R. Schneider, M. Ziari, F. Kish, and D. Welch, “InP photonic integrated circuits,” IEEE J. Sel. Top. Quantum Electron.16(5), 1113–1125 (2010). [CrossRef]
  10. Y. Suematsu, M. Yamada, and K. Hayashi, “Integrated Twin-Guide AlGaAs laser with multiheterostructure,” IEEE J Quantum Electron QE11(7), 457–460 (1975). [CrossRef]
  11. P. V. Studenkov, M. R. Gokhale, J. C. Dries, and S. R. Forrest, “Monolithic integration of a quantum-well laser and an optical amplifier using an asymmetric twin-waveguide structure,” IEEE Photon. Technol. Lett.10(8), 1088–1090 (1998). [CrossRef]
  12. F. Xia, V. M. Menon, and S. R. Forrest, “Photonic integration using Asymmetric Twin-Waveguide (ATG) technology: Part I - Concepts and theory,” IEEE J. Sel. Top. Quantum Electron.11(1), 17–29 (2005). [CrossRef]
  13. V. M. Menon, F. Xia, and S. R. Forrest, “Photonic integration using Asymmetric Twin-Waveguide (ATG) technology: Part II-devices,” IEEE J. Sel. Top. Quantum Electron.11(1), 30–42 (2005). [CrossRef]
  14. M. Galarza, D. Van Thourhout, R. Baets, and M. Lopez-Amo, “Compact and highly-efficient polarization independent vertical resonant couplers for active-passive monolithic integration,” Opt. Express16(12), 8350–8358 (2008). [CrossRef] [PubMed]
  15. X. Sun and A. Yariv, Supermode control in integrated hybrid Si/III-V optoelectronic circuits for modal gain enhancement” in CLEO/Pacific Rim 2009 - 8th Pacific Rim Conference on Lasers and Electro-OpticsAnonymous, 5292330, (2009).
  16. A. Yariv, “Coupled-mode theory for guided-wave optics,” IEEE J Quantum Electron QE9(9), 919–933 (1973). [CrossRef]
  17. J. Hu and C. R. Menyuk, “Understanding leaky modes: Slab waveguide revisited,” Adv. Opt. Photonics1(1), 58–106 (2009). [CrossRef]
  18. A. S. Sudbo, “Numerically stable formulation of the transverse resonance method for vector mode-field calculations in dielectric waveguides,” IEEE Photon. Technol. Lett.5(3), 342–344 (1993). [CrossRef]
  19. C. Vassallo and J. M. Van Der Keur, “Comparison of a few transparent boundary conditions for finite-difference optical mode-solvers,” J. Lightwave Technol.15(2), 397–402 (1997). [CrossRef]
  20. J. E. Schramm, D. I. Babic, E. L. Hu, J. E. Bowers, and J. L. Merz, “Fabrication of high-aspect-ratio InP-based vertical-cavity laser mirrors using CH4/H2/O2/Ar reactive ion etching,” J. Vac. Sci. Technol. B15(6), 2031–2036 (1997). [CrossRef]
  21. L. M. Augustin, J. J. G. M. van der Tol, R. Hanfoug, W. J. M. de Laat, M. J. E. van de Moosdijk, P. W. L. van Dijk, Y.-S. Oei, and M. K. Smit, “A single etch-step fabrication-tolerant polarization splitter,” J. Lightwave Technol.25(3), 740–746 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited