OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 19 — Sep. 23, 2013
  • pp: 22911–22917

Integrable high order UWB pulse photonic generator based on cross phase modulation in a SOA-MZI

Vanessa Moreno, Manuel Rius, José Mora, Miguel A. Muriel, and José Capmany  »View Author Affiliations


Optics Express, Vol. 21, Issue 19, pp. 22911-22917 (2013)
http://dx.doi.org/10.1364/OE.21.022911


View Full Text Article

Enhanced HTML    Acrobat PDF (1532 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose and experimentally demonstrate a potentially integrable optical scheme to generate high order UWB pulses. The technique is based on exploiting the cross phase modulation generated in an InGaAsP Mach-Zehnder interferometer containing integrated semiconductor optical amplifiers, and is also adaptable to different pulse modulation formats through an optical processing unit which allows to control of the amplitude, polarity and time delay of the generated taps.

© 2013 OSA

OCIS Codes
(060.0060) Fiber optics and optical communications : Fiber optics and optical communications
(060.5625) Fiber optics and optical communications : Radio frequency photonics

ToC Category:
Integrated Microwave Photonics

History
Original Manuscript: June 4, 2013
Revised Manuscript: August 5, 2013
Manuscript Accepted: August 5, 2013
Published: September 23, 2013

Virtual Issues
Microwave Photonics (2013) Optics Express

Citation
Vanessa Moreno, Manuel Rius, José Mora, Miguel A. Muriel, and José Capmany, "Integrable high order UWB pulse photonic generator based on cross phase modulation in a SOA-MZI," Opt. Express 21, 22911-22917 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-19-22911


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Yao, “Photonics for ultrawideband communications,” IEEE Microw. Mag.10(4), 82–95 (2009). [CrossRef]
  2. J. Zheng, N. Zu, L. Wang, J. Liu, and H. Liang, “Photonic generation of ultrawideband pulse with tunable notch- band behavior,” IEEE Photonics Journal4(3), 657–663 (2012).
  3. J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics1(6), 319–330 (2007). [CrossRef]
  4. F. Zeng and J. Yao, “An approach to ultrawideband pulse generation and distribution over optical fiber,” IEEE Photon. Technol. Lett.18(7), 823–825 (2006). [CrossRef]
  5. J. Yao, F. Zeng, and Q. Wang, “Photonic generation of ultrawideband signals,” J. Lightwave Technol.25(11), 3219–3235 (2007). [CrossRef]
  6. J. Yao, “Photonics for ultrawideband communications,” IEEE Microw. Mag.10(4), 82–95 (2009). [CrossRef]
  7. F. Zeng and J. Yao, “All-optical bandpass microwave filter based on an electro-optic phase modulator,” Opt. Express12(16), 3814–3819 (2004). [CrossRef] [PubMed]
  8. E. Zhou, X. Xu, K. Lui, and K. K.-Y. Wong, “A power-efficient ultra-wideband pulse generator based on multiple PM-IM conversions,” IEEE Photon. Technol. Lett.22(14), 1063–1065 (2010). [CrossRef]
  9. I. Lin, J. D. McKinney, and A. M. Weiner, “Photonic synthesis of broadband microwave arbitrary waeforms applicable to ultrawideband communication,” IEEE Microw. Wirel. Compon. Lett.15(4), 226–228 (2005). [CrossRef]
  10. A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum.71(5), 1929–1960 (2000). [CrossRef]
  11. J. Capmany, B. Ortega, and D. Pastor, “A tutorial on microwave photonic filters,” J. Lightwave Technol.24(1), 201–229 (2006). [CrossRef]
  12. R. A. Minasian, “Photonic signal processing of microwave signals,” IEEE Trans. Microw. Theory Tech.54(2), 832–846 (2006). [CrossRef]
  13. M. Bolea, J. Mora, B. Ortega, and J. Capmany, “Optical UWB pulse generator using an N tap microwave photonic filter and phase inversion adaptable to different pulse modulation formats,” Opt. Express17(7), 5023–5032 (2009). [CrossRef] [PubMed]
  14. J. Dong, X. Zhang, Y. Zhang, and D. Huang, “Optical UWB doublet pulse generation using multiple nonlinearities of single SOA,” Electron. Lett.44(18), 1083–1084 (2008). [CrossRef]
  15. F. Wang, J. Dong, E. Xu, and X. Zhang, “All-optical UWB generation and modulation using SOA-XPM effect and DWDM-based multi-channel frequency discrimination,” Opt. Express18(24), 24588–24594 (2010). [CrossRef] [PubMed]
  16. B. Luo, J. Dong, and X. Zhang, “Photonic generation of UWB doublet pulse based on XPM in an SOA-based NOLM,” Opto-Electronics and Communications Conference, 717–718 (2012). [CrossRef]
  17. M. D. Manzanedo, J. Mora, and J. Capmany, “Continuously tunable microwave photonic filter with negative coefficients using cross-phase modulation in an SOA-MZ interferometer,” IEEE Photon. Technol. Lett.20(7), 526–528 (2008). [CrossRef]
  18. D. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, and J. Capmany, “Integrated microwave photonics,” Laser & Photon. Rev.7(4), 506–538 (2013). [CrossRef]
  19. S. Sales, W. Xue, J. Mork, and I. Gasulla, “Slow and Fast Light Effects and their Applications to microwave photonics using Semiconductor Optical Amplifiers,” IEEE Trans. Microw. Theory Tech.58(11), 3022–3038 (2010). [CrossRef]
  20. J. Sancho, J. Bourderionnet, J. Lloret, S. Combrié, I. Gasulla, S. Xavier, S. Sales, P. Colman, G. Lehoucq, D. Dolfi, J. Capmany, and A. De Rossi, “Integrable microwave filter based on a photonic crystal delay line,” Nat Commun3, 1075 (2012). [CrossRef] [PubMed]
  21. H.-W. Chen, A. W. Fang, J. D. Peters, Z. Wang, J. Bovington, D. Liang, and J. E. Bowers, “Integrated microwave photonic filter on a hybrid silicon platform,” IEEE Trans. Microw. Theory Tech.58(11), 3213–3219 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited