OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 19 — Sep. 23, 2013
  • pp: 22937–22961

Silicon nitride microwave photonic circuits

Chris G. H. Roeloffzen, Leimeng Zhuang, Caterina Taddei, Arne Leinse, René G. Heideman, Paulus W. L. van Dijk, Ruud M. Oldenbeuving, David A. I. Marpaung, Maurizio Burla, and Klaus -J. Boller  »View Author Affiliations

Optics Express, Vol. 21, Issue 19, pp. 22937-22961 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (4384 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present an overview of several microwave photonic processing functionalities based on combinations of Mach-Zehnder and ring resonator filters using the high index contrast silicon nitride (TriPleXTM) waveguide technology. All functionalities are built using the same basic building blocks, namely straight waveguides, phase tuning elements and directional couplers. We recall previously shown measurements on high spurious free dynamic range microwave photonic (MWP) link, ultra-wideband pulse generation, instantaneous frequency measurements, Hilbert transformers, microwave polarization networks and demonstrate new measurements and functionalities on a 16 channel optical beamforming network and modulation format transformer as well as an outlook on future microwave photonic platform integration, which will lead to a significantly reduced footprint and thereby enables the path to commercially viable MWP systems.

© 2013 OSA

OCIS Codes
(060.2360) Fiber optics and optical communications : Fiber optics links and subsystems
(070.6020) Fourier optics and signal processing : Continuous optical signal processing
(130.3120) Integrated optics : Integrated optics devices
(350.4010) Other areas of optics : Microwaves
(060.5625) Fiber optics and optical communications : Radio frequency photonics

ToC Category:
Integrated Microwave Photonics

Original Manuscript: June 4, 2013
Revised Manuscript: August 22, 2013
Manuscript Accepted: August 22, 2013
Published: September 23, 2013

Virtual Issues
Microwave Photonics (2013) Optics Express

Chris G. H. Roeloffzen, Leimeng Zhuang, Caterina Taddei, Arne Leinse, René G. Heideman, Paulus W. L. van Dijk, Ruud M. Oldenbeuving, David A. I. Marpaung, Maurizio Burla, and Klaus -J. Boller, "Silicon nitride microwave photonic circuits," Opt. Express 21, 22937-22961 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics1(6), 319–330 (2007). [CrossRef]
  2. J. Yao, “Microwave photonics,” J. Lightwave Technol.27(3), 314–335 (2009). [CrossRef]
  3. D. A. I. Marpaung, C. G. H. Roeloffzen, R. G. Heideman, A. Leinse, S. Sales, and J. Capmany, “Integrated microwave photonics,” Laser Photon. Rev.7(1), 1–33 (2013).
  4. M. Burla, C. G. H. Roeloffzen, L. Zhuang, D. Marpaung, M. R. Khan, P. Maat, K. Dijkstra, A. Leinse, M. Hoekman, and R. Heideman, “System integration and radiation pattern measurements of a phased array antenna employing an integrated photonic beamformer for radio astronomy applications,” Appl. Opt.51(7), 789–802 (2012). [CrossRef] [PubMed]
  5. M. Burla, D. Marpaung, L. Zhuang, A. Leinse, M. Hoekman, R. Heideman, and C. Roeloffzen, “Integrated photonic Ku-band beamformer chip with continuous amplitude and delay control,” IEEE Photon. Technol. Lett.25(12), 1145–1148 (2013). [CrossRef]
  6. A. Meijerink, C. G. H. Roeloffzen, R. Meijerink, L. Zhuang, D. A. I. Marpaung, M. J. Bentum, M. Burla, J. Verpoorte, P. Jorna, A. Hulzinga, and W. C. van Etten, “Novel ring resonator-based integrated photonic beamformer for broadband phased-array antennas-Part I: design and performance analysis,” J. Lightwave Technol.28(1), 3–18 (2010). [CrossRef]
  7. L. Zhuang, C. G. H. Roeloffzen, A. Meijerink, M. Burla, D. A. I. Marpaung, A. Leinse, M. Hoekman, R. G. Heideman, and W. C. van Etten, “Novel ring resonator-based integrated photonic beamformer for broadband phased-array antennas-Part II: experimental prototype,” J. Lightwave Technol.28(1), 19–31 (2010). [CrossRef]
  8. L. Zhuang, C. G. H. Roeloffzen, R. G. Heideman, A. Borreman, A. Meijerink, and W. van Etten, “Single-chip ring resonator-based 1x8 optical beam forming network in CMOS-compatible waveguide technology,” IEEE Photon. Technol. Lett.19(15), 1130–1132 (2007). [CrossRef]
  9. M. Burla, D. A. I. Marpaung, L. Zhuang, C. G. H. Roeloffzen, M. R. Khan, A. Leinse, M. Hoekman, and R. G. Heideman, “On-chip CMOS compatible reconfigurable optical delay line with separate carrier tuning for microwave photonic signal processing,” Opt. Express19(22), 21475–21484 (2011). [CrossRef] [PubMed]
  10. L. Zhuang, D. A. I. Marpaung, M. Burla, W. P. Beeker, A. Leinse, and C. G. H. Roeloffzen, “Low-loss, high-index-contrast Si₃N₄/SiO₂ optical waveguides for optical delay lines in microwave photonics signal processing,” Opt. Express19(23), 23162–23170 (2011). [CrossRef] [PubMed]
  11. D. Marpaung, C. Roeloffzen, A. Leinse, and M. Hoekman, “A photonic chip based frequency discriminator for a high performance microwave photonic link,” Opt. Express18(26), 27359–27370 (2010). [CrossRef] [PubMed]
  12. D. A. I. Marpaung, L. Chevalier, M. Burla, and C. G. H. Roeloffzen, “Impulse radio ultrawideband pulse shaper based on a programmable photonic chip frequency discriminator,” Opt. Express19(25), 24838–24848 (2011). [CrossRef] [PubMed]
  13. D. Marpaung, “On-chip photonic-assisted instantaneous microwave frequency measurement system,” IEEE Photon. Technol. Lett.25(9), 837–840 (2013). [CrossRef]
  14. L. Zhuang, W. P. Beeker, A. Leinse, R. G. Heideman, P. van Dijk, and C. Roeloffzen, “Novel wideband microwave polarization network using a fully-reconfigurable photonic waveguide interleaver with a two-ring resonator-assisted asymmetric Mach-Zehnder structure,” Opt. Express21(3), 3114–3124 (2013). [CrossRef] [PubMed]
  15. L. Zhuang, M. R. Khan, W. P. Beeker, A. Leinse, R. G. Heideman, and C. G. H. Roeloffzen, “Novel microwave photonic fractional Hilbert transformer using a ring resonator-based optical all-pass filter,” Opt. Express20(24), 26499–26510 (2012). [CrossRef] [PubMed]
  16. C. K. Madsen and J. H. Zhao, Optical Filter Design and Analysis: A Signal Processing Approach. (Wiley-Interscience, 1999).
  17. A. V. Oppenheim, and R. W. Schafer, Digital Signal Processing (Prentice-Hall, 1975).
  18. R. Adar, M. Serbin, and V. Mizrahi, “Less than 1 dB per meter propagation loss of silica waveguides measured using a ring resonator,” J. Lightwave Technol.12(8), 1369–1372 (1994). [CrossRef]
  19. B. Larsen, L. Nielsen, K. Zenth, L. Leick, C. Laurent-Lund, L. Andersen, and K. Mattsson, “A low-loss, silicon-oxynitride process for compact optical devices,” in Proceedings of ECOC (Rimini, Italy, 2003).
  20. J. F. Bauters, M. J. R. Heck, D. John, D. Dai, M. C. Tien, J. S. Barton, A. Leinse, R. G. Heideman, D. J. Blumenthal, and J. E. Bowers, “Ultra-low-loss high-aspect-ratio Si3N4 waveguides,” Opt. Express19(4), 3163–3174 (2011). [CrossRef] [PubMed]
  21. A. Melloni, R. Costa, G. Cusmai, and F. Morichetti, “The role of index contrast in dielectric optical waveguides,” Int. J. Mater. Prod. Technol.34(4), 421–437 (2009). [CrossRef]
  22. F. Morichetti, A. Melloni, M. Martinelli, R. G. Heideman, A. Leinse, D. H. Geuzebroek, and A. Borreman, “Box-shaped dielectric waveguides: A new concept in integrated optics?” J. Lightwave Technol.25(9), 2579–2589 (2007). [CrossRef]
  23. M. Asghari, “Silicon Photonics: A low cost integration platform for datacom and telecom applications,” in Proc. OFC/NFOEC (San Diego, Calif., USA, 2008). [CrossRef]
  24. R. G. Heideman, M. Hoekman, and F. Schreuder, “TriPleX™-based integrated optical ring resonators for lab-on-a-chip- and environmental detection,” IEEE J. Sel. Top. Quantum Electron.18(5), 1583–1596 (2012). [CrossRef]
  25. A. Leinse, R. G. Heideman, M. Hoekman, F. Schreuder, F. Falke, C. G. H. Roeloffzen, L. Zhuang, M. Burla, D. Marpaung, D. H. Geuzebroek, R. Dekker, E. J. Klein, P. W. L. van Dijk, and R. M. Oldenbeuving, “TriPleX waveguide platform: low-loss technology over a wide wavelength range,” Proc. SPIE8767, 87670E (2013), doi:. [CrossRef]
  26. R. M. Oldenbeuving, E. J. Klein, H. L. Offerhaus, C. J. Lee, H. Song, and K.-J. Boller, “25 kHz narrow spectral bandwidth of a wavelength tunable diode laser with a short waveguide-based external cavity,” Laser Phys. Lett.10(1), 015804–015812 (2013). [CrossRef]
  27. M. Smit, J. Van der Tol, and M. Hill, “Moore’s law in photonics,” Laser Photon. Rev. 6(1), 1–13 (2011).
  28. C. Ciminelli, F. Dell’Olio, M. N. Armenise, F. M. Soares, and W. Passenberg, “High performance InP ring resonator for new generation monolithically integrated optical gyroscopes,” Opt. Express21(1), 556–564 (2013). [CrossRef] [PubMed]
  29. M. Lysevych, H. H. Tan, F. Karouta, and C. Jagadish, “Single-step RIE fabrication process of low los InP waveguide using CH4/H2 chemistry,” J. Electrochem. Soc.158(3), H281–H284 (2011). [CrossRef]
  30. R. M. Oldenbeuving, “Spectral control of diode lasers using external waveguide circuits,” PhD-thesis (Universiteit Twente, 2013).
  31. Website of Eutelsat, a satellite operator, www.eutelsat.com/en/satellites/the-fleet/EUTELSAT-KA-SAT.html , visited May 28 2013.
  32. S. R. Davis, G. Farca, S. D. Rommel, S. Johnson, and M. H. Anderson, “Liquid crystal waveguides: new devices enabled by > 1000 waves of optical phase control,” Proc. SPIE7618, 76180E (2010). [CrossRef]
  33. D. Marpaung, L. Zhuang, M. Burla, C. Roeloffzen, J. Verpoorte, H. Schippers, A. Hulzinga, P. Jorna, W. P. Beeker, A. Leinse, R. Heideman, B. Noharet, Q. Wang, B. Sanadgol, and R. Baggen, “Towards a broadband and squint-free Ku-band phased array antenna system for airborne satellite communications,” in Proc. of the Fifth European Conference on Antennas and Propagation EuCAP (Rome, Italy, 2011).
  34. R. L. Moreira, J. Garcia, W. Li, J. Bauters, J. S. Barton, M. J. R. Heck, J. E. Bowers, and D. J. Blumenthal, “Integrated ultra-low-loss 4-bit tunable delay for broadband phased array antenna applications,” IEEE Photon. Technol. Lett.25(12), 1165–1168 (2013). [CrossRef]
  35. W. Li, W. Zhang, and J. Yao, “An ultra-wideband 360° photonic-assisted microwave phase shifter,” in Proc. of OFC/NFOEC (Anaheim, Calif., USA, 2013).
  36. P. A. Morton and J. B. Khurgin, “Microwave photonic delay line with separate tuning of the optical carrier,” IEEE Photon. Technol. Lett.21(22), 1686–1688 (2009). [CrossRef]
  37. S. Chin, L. Thévenaz, J. Sancho, S. Sales, J. Capmany, P. Berger, J. Bourderionnet, and D. Dolfi, “Broadband true time delay for microwave signal processing, using slow light based on stimulated Brillouin scattering in optical fibers,” Opt. Express18(21), 22599–22613 (2010). [CrossRef] [PubMed]
  38. R. Won, “On-chip signal processing,” Nat. Photonics5(12), 725 (2011), doi:. [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited