OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 2 — Jan. 28, 2013
  • pp: 1430–1439

Nonlocal effects in a hybrid plasmonic waveguide for nanoscale confinement

Qiangsheng Huang, Fanglin Bao, and Sailing He  »View Author Affiliations


Optics Express, Vol. 21, Issue 2, pp. 1430-1439 (2013)
http://dx.doi.org/10.1364/OE.21.001430


View Full Text Article

Enhanced HTML    Acrobat PDF (1250 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The effect of nonlocal optical response is studied for a novel silicon hybrid plasmonic waveguide (HPW). Finite element method is used to implement the hydrodynamic model and the propagation mode is analyzed for a hybrid plasmonic waveguide of arbitrary cross section. The waveguide has an inverted metal nano-rib over a silicon-on-insulator (SOI) structure. An extremely small mode area of~10−6λ2 is achieved together with several microns long propagation distance at the telecom wavelength of 1.55μm. The figure of merit (FoM) is also improved in the same time, compared to the pervious hybrid plasmonic waveguide. We demonstrate the validity of our method by comparing our simulating results with some analytical results for a metal cylindrical waveguide and a metal slab waveguide in a wide wavelength range. For the HPW, we find that the nonlocal effects can give less loss and better confinement. In particular, we explore the influence of the radius of the rib’s tip on the loss and the confinement. We show that the nonlocal effects give some new fundamental limitation on the confinement, leaving the mode area finite even for geometries with infinitely sharp tips.

© 2013 OSA

OCIS Codes
(130.2790) Integrated optics : Guided waves
(240.6680) Optics at surfaces : Surface plasmons
(250.5300) Optoelectronics : Photonic integrated circuits
(260.3910) Physical optics : Metal optics
(160.4236) Materials : Nanomaterials

ToC Category:
Optics at Surfaces

History
Original Manuscript: November 1, 2012
Revised Manuscript: December 16, 2012
Manuscript Accepted: January 2, 2013
Published: January 14, 2013

Citation
Qiangsheng Huang, Fanglin Bao, and Sailing He, "Nonlocal effects in a hybrid plasmonic waveguide for nanoscale confinement," Opt. Express 21, 1430-1439 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-2-1430


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. L. Liu, Z. H. Han, and S. L. He, “Novel surface plasmon waveguide for high integration,” Opt. Express13(17), 6645–6650 (2005). [CrossRef] [PubMed]
  2. Z. Han, A. Y. Elezzabi, and V. Van, “Experimental realization of subwavelength plasmonic slot waveguides on a silicon platform,” Opt. Lett.35(4), 502–504 (2010). [CrossRef] [PubMed]
  3. D. F. Pile and D. K. Gramotnev, “Channel plasmon-polariton in a triangular groove on a metal surface,” Opt. Lett.29(10), 1069–1071 (2004). [CrossRef] [PubMed]
  4. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature440(7083), 508–511 (2006). [CrossRef] [PubMed]
  5. D. Pile, T. Ogawa, D. K. Gramotnev, T. Okamoto, M. Haraguchi, M. Fukui, and S. Matsuo, “Theoretical and experimental investigation of strongly localized plasmons on triangular metal wedges for subwavelength waveguiding,” Appl. Phys. Lett.87(6), 061106–061103 (2005). [CrossRef]
  6. T. Ogawa, D. Pile, T. Okamoto, M. Haraguchi, M. Fukui, and D. K. Gramotnev, “Numerical and experimental investigation of wedge tip radius effect on wedge plasmons,” J. Appl. Phys.104(3), 033102–033106 (2008). [CrossRef]
  7. E. Moreno, S. G. Rodrigo, S. I. Bozhevolnyi, L. Martín-Moreno, and F. J. García-Vidal, “Guiding and focusing of electromagnetic fields with wedge plasmon polaritons,” Phys. Rev. Lett.100(2), 023901 (2008). [CrossRef] [PubMed]
  8. A. Boltasseva, V. S. Volkov, R. B. Nielsen, E. Moreno, S. G. Rodrigo, and S. I. Bozhevolnyi, “Triangular metal wedges for subwavelength plasmon-polariton guiding at telecom wavelengths,” Opt. Express16(8), 5252–5260 (2008). [CrossRef] [PubMed]
  9. R. F. Oulton, V. J. Sorger, D. A. Genov, D. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics2(8), 496–500 (2008). [CrossRef]
  10. D. X. Dai and S. L. He, “A silicon-based hybrid plasmonic waveguide with a metal cap for a nano-scale light confinement,” Opt. Express17(19), 16646–16653 (2009). [CrossRef] [PubMed]
  11. D. X. Dai and S. L. He, “Low-loss hybrid plasmonic waveguide with double low-index nano-slots,” Opt. Express18(17), 17958–17966 (2010). [CrossRef] [PubMed]
  12. Y. S. Bian, Z. Zheng, Y. Liu, J. S. Liu, J. S. Zhu, and T. Zhou, “Hybrid wedge plasmon polariton waveguide with good fabrication-error-tolerance for ultra-deep-subwavelength mode confinement,” Opt. Express19(23), 22417–22422 (2011). [CrossRef] [PubMed]
  13. D. X. Dai, Y. C. Shi, S. L. He, L. Wosinski, and L. Thylen, “Gain enhancement in a hybrid plasmonic nano-waveguide with a low-index or high-index gain medium,” Opt. Express19(14), 12925–12936 (2011). [CrossRef] [PubMed]
  14. A. D. Boardman, Electromagnetic Surface Modes (Wiley, 1982).
  15. J. M. McMahon, S. K. Gray, and G. C. Schatz, “Nonlocal optical response of metal nanostructures with arbitrary shape,” Phys. Rev. Lett.103(9), 097403 (2009). [CrossRef] [PubMed]
  16. J. M. McMahon, S. K. Gray, and G. C. Schatz, “Calculating nonlocal optical properties of structures with arbitrary shape,” Phys. Rev. B82(3), 035423 (2010). [CrossRef]
  17. G. Toscano, S. Raza, A. P. Jauho, N. A. Mortensen, and M. Wubs, “Modified field enhancement and extinction by plasmonic nanowire dimers due to nonlocal response,” Opt. Express20(4), 4176–4188 (2012). [CrossRef] [PubMed]
  18. S. Raza, G. Toscano, A. P. Jauho, M. Wubs, and N. A. Mortensen, “Unusual resonances in nanoplasmonic structures due to nonlocal response,” Phys. Rev. B84(12), 121412 (2011). [CrossRef]
  19. G. Toscano, S. Raza, S. Xiao, M. Wubs, A. P. Jauho, S. I. Bozhevolnyi, and N. A. Mortensen, “Surface-enhanced Raman spectroscopy: nonlocal limitations,” Opt. Lett.37(13), 2538–2540 (2012). [CrossRef] [PubMed]
  20. A. Wiener, A. I. Fernández-Domínguez, A. P. Horsfield, J. B. Pendry, and S. A. Maier, “Nonlocal effects in the nanofocusing performance of plasmonic tips,” Nano Lett.12(6), 3308–3314 (2012). [CrossRef] [PubMed]
  21. K. R. Hiremath, L. Zschiedrich, and F. Schmidt, “Numerical solution of nonlocal hydrodynamic Drude model for arbitrary shaped nano-plasmonic structures using Nédélec finite elements,” J. Comput. Phys.231(17), 5890–5896 (2012). [CrossRef]
  22. C. Ciracì, R. T. Hill, J. J. Mock, Y. Urzhumov, A. I. Fernández-Domínguez, S. A. Maier, J. B. Pendry, A. Chilkoti, and D. R. Smith, “Probing the ultimate limits of plasmonic enhancement,” Science337(6098), 1072–1074 (2012). [CrossRef] [PubMed]
  23. A. I. Fernández-Domínguez, A. Wiener, F. J. García-Vidal, S. A. Maier, and J. B. Pendry, “Transformation-optics description of nonlocal effects in plasmonic nanostructures,” Phys. Rev. Lett.108(10), 106802 (2012). [CrossRef] [PubMed]
  24. G. C. Aers, B. V. Paranjape, and A. D. Boardman, “Non-radiative surface plasma-polariton modes of inhomogeneous metal circular cylinders,” J. Phys. F10(1), 53–65 (1980). [CrossRef]
  25. R. Ruppin, “Effect of non-locality on nanofocusing of surface plasmon field intensity in a conical tip,” Phys. Lett. A340(1-4), 299–302 (2005). [CrossRef]
  26. R. Ruppin, “Non-local optics of the near field lens,” J. Phys. Condens. Matter17(12), 1803–1810 (2005). [CrossRef]
  27. F. J. García de Abajo, “Nonlocal effects in the plasmons of strongly interacting nanoparticles, dimers, and waveguides,” J. Phys. Chem. C112(46), 17983–17987 (2008). [CrossRef]
  28. D. C. Marinica, A. K. Kazansky, P. Nordlander, J. Aizpurua, and A. G. Borisov, “Quantum plasmonics: Nonlinear effects in the field enhancement of a plasmonic nanoparticle dimer,” Nano Lett.12(3), 1333–1339 (2012). [CrossRef] [PubMed]
  29. R. Esteban, A. G. Borisov, P. Nordlander, and J. Aizpurua, “Bridging quantum and classical plasmonics with a quantum-corrected model,” Nat Commun3, 825 (2012). [CrossRef] [PubMed]
  30. P. Monk, Finite Element Methods for Maxwell's Equations (Oxford University Press, 2003).
  31. A. R. Melnyk and M. J. Harrison, “Theory of optical excitation of plasmons in metals,” Phys. Rev. B2(4), 835–850 (1970). [CrossRef]
  32. D. X. Dai, Y. C. Shi, S. L. He, L. Wosinski, and L. Thylen, “Silicon hybrid plasmonic submicron-donut resonator with pure dielectric access waveguides,” Opt. Express19(24), 23671–23682 (2011). [CrossRef] [PubMed]
  33. R. Ruppin, “Electromagnetic energy density in a dispersive and absorptive material,” Phys. Lett. A299(2-3), 309–312 (2002). [CrossRef]
  34. F. Forstmann and H. Stenschke, “Electrodynamics at metal boundaries with inclusion of plasma waves,” Phys. Rev. Lett.38(23), 1365–1368 (1977). [CrossRef]
  35. R. Hao, E. Li, and X. Wei, “Two-dimensional light confinement in cross-index-modulation plasmonic waveguides,” Opt. Lett.37(14), 2934–2936 (2012). [CrossRef] [PubMed]
  36. R. Buckley and P. Berini, “Figures of merit for 2D surface plasmon waveguides and application to metal stripes,” Opt. Express15(19), 12174–12182 (2007). [CrossRef] [PubMed]
  37. R. F. Oulton, G. Bartal, D. F. Pile, and X. Zhang, “Confinement and propagation characteristics of subwavelength plasmonic modes,” New J. Phys.10(10), 105018 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited