OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 2 — Jan. 28, 2013
  • pp: 1440–1447

High-speed and high-efficiency superconducting nanowire single photon detector array

D. Rosenberg, A. J. Kerman, R. J. Molnar, and E. A. Dauler  »View Author Affiliations

Optics Express, Vol. 21, Issue 2, pp. 1440-1447 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1192 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Superconducting nanowire single photon detectors (SNSPDs) have separately demonstrated high efficiency, low noise, and extremely high speed when detecting single photons. However, achieving all of these simultaneously has been limited by detector subtleties and tradeoffs. Here, we report an SNSPD system with <80 ps timing resolution, kHz noise count rates, and 76% fiber-coupled system detection efficiency in the low-flux limit at 1550 nm. We present a model for determining the detection efficiency penalty due to the detection recovery time, and we validate our method using experimental data obtained at high count rates. We demonstrate improved performance tradeoffs, such as 68% system detection efficiency, including losses due to detector recovery time, when coupled to a Poisson source emitting 100 million photons per second. Our system can provide limited photon number resolution, continuous cryogen-free operation, and scalability to future imaging and GHz-count-rate applications.

© 2013 OSA

OCIS Codes
(040.5160) Detectors : Photodetectors
(220.0220) Optical design and fabrication : Optical design and fabrication
(230.0230) Optical devices : Optical devices

ToC Category:

Original Manuscript: November 5, 2012
Revised Manuscript: December 10, 2012
Manuscript Accepted: December 10, 2012
Published: January 14, 2013

D. Rosenberg, A. J. Kerman, R. J. Molnar, and E. A. Dauler, "High-speed and high-efficiency superconducting nanowire single photon detector array," Opt. Express 21, 1440-1447 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Aspect, “Bell’s inequality test: more ideal than ever,” Nature398(6724), 189–190 (1999). [CrossRef]
  2. A. Acín, N. Brunner, N. Gisin, S. Massar, S. Pironio, and V. Scarani, “Device-independent security of quantum cryptography against collective attacks,” Phys. Rev. Lett.98(23), 230501 (2007). [CrossRef] [PubMed]
  3. A. Aspuru-Guzik and P. Walther, “Photonic quantum simulators,” Nat. Phys.8(4), 285–291 (2012). [CrossRef]
  4. M. Orrit and J. Bernard, “Single pentacene molecules detected by fluorescence excitation in a p-terphenyl crystal,” Phys. Rev. Lett.65(21), 2716–2719 (1990). [CrossRef] [PubMed]
  5. H. Hemmati, A. Biswas, and D. M. Boroson, “Prospects for Improvement of Interplanetary Laser Communication Data Rates by 30 dB,” Proc. IEEE95(10), 2082–2092 (2007). [CrossRef]
  6. D. Fukuda, G. Fujii, T. Numata, K. Amemiya, A. Yoshizawa, H. Tsuchida, H. Fujino, H. Ishii, T. Itatani, S. Inoue, and T. Zama, “Titanium-based transition-edge photon number resolving detector with 98% detection efficiency with index-matched small-gap fiber coupling,” Opt. Express19(2), 870–875 (2011). [CrossRef] [PubMed]
  7. S. Verghese, J. P. Donnelly, E. K. Duerr, K. A. McIntosh, D. C. Chapman, C. J. Vineis, G. M. Smith, J. E. Funk, K. E. Jensen, P. I. Hopman, D. C. Shaver, B. F. Aull, J. C. Aversa, J. P. Frechette, J. B. Glettler, Z. L. Liau, J. M. Mahan, L. J. Mahoney, K. M. Molvar, F. J. O¿Donnell, D. C. Oakley, E. J. Ouellette, M. J. Renzi, and B. M. Tyrrell, “Arrays of InP-based avalanche photodiodes for photon counting,” IEEE J. Sel. Top. Quantum Electron.13, 870–886 (2007). [CrossRef]
  8. I. Rech, A. Gulinatti, F. Zappa, M. Ghioni, and S. Cova, “High performance silicon single-photon avalanche diode array,” Proc. SPIE7320, 73200H, 73200H-12 (2009). [CrossRef]
  9. C. M. Natarajan, M. G. Tanner, and R. H. Hadfield, “Superconducting nanowire single-photon detectors: physics and applications,” Supercond. Sci. Technol.25(6), 063001 (2012). [CrossRef]
  10. A. J. Kerman, E. A. Dauler, W. E. Keicher, J. K. W. Yang, K. K. Berggren, G. N. Gol’tsman, and B. Voronov, “Kinetic-inductance-limited reset time of superconducting nanowire photon counters,” Appl. Phys. Lett.88(11), 111116 (2006). [CrossRef]
  11. V. Anant, A. J. Kerman, E. A. Dauler, J. K. W. Yang, K. M. Rosfjord, and K. K. Berggren, “Optical properties of superconducting nanowire single-photon detectors,” Opt. Express16(14), 10750–10761 (2008). [CrossRef] [PubMed]
  12. A. J. Kerman, D. Rosenberg, and E. A. Dauler, (submitted).
  13. J. K. W. Yang, A. J. Kerman, E. A. Dauler, V. Anant, K. M. Rosfjord, and K. K. Berggren, “Modeling the electrical and thermal response of superconducting nanowire single-photon detectors,” IEEE Trans. Appl. Supercond.17(2), 581–585 (2007). [CrossRef]
  14. M. Ejrnaes, R. Cristiano, O. Quaranta, S. Pagano, A. Gaggero, F. Mattioli, R. Leoni, B. Voronov, and G. Gol’tsman, “A cascade switching superconducting single photon detector,” Appl. Phys. Lett.91(26), 262509 (2007). [CrossRef]
  15. A. J. Kerman, J. K. W. Yang, R. J. Molnar, E. A. Dauler, and K. K. Berggren, “Electrothermal feedback in superconducting nanowire single-photon detectors,” Phys. Rev. B79(10), 100509 (2009). [CrossRef]
  16. M. Ejrnaes, A. Casaburi, O. Quaranta, S. Marchetti, A. Gaggero, F. Mattioli, R. Leoni, S. Pagano, and R. Cristiano, “Characterization of parallel superconducting nanowire single photon detectors,” Supercond. Sci. Technol.22(5), 055006 (2009). [CrossRef]
  17. A. J. Annunziata, O. Quaranta, D. F. Santavicca, A. Casaburi, L. Frunzio, M. Ejrnaes, M. J. Rooks, R. Cristiano, S. Pagano, A. Frydman, and D. E. Prober, “Reset dynamics and latching in niobium superconducting nanowire single-photon detectors,” J. Appl. Phys.108(8), 084507 (2010). [CrossRef]
  18. E. A. Dauler, A. J. Kerman, B. S. Robinson, J. K. W. Yang, B. Voronov, G. Gol’tsman, S. A. Hamilton, and K. K. Berggren, “Photon-number-resolution with sub-30-ps timing using multi-element superconducting nanowire single photon detectors,” J. Mod. Opt.56(2-3), 364–373 (2009). [CrossRef]
  19. T. Yamashita, S. Miki, W. Qiu, M. Fujiwara, M. Sasaki, and Z. Wang, “Temperature dependent performances of superconducting nanowire single-photon detectors in an ultralow-temperature region,” Appl. Phys. Express3(10), 102502 (2010). [CrossRef]
  20. A. J. Kerman, E. A. Dauler, J. K. W. Yang, K. M. Rosfjord, V. Anant, K. K. Berggren, G. N. Gol’tsman, and B. M. Voronov, “Constriction-limited detection efficiency of superconducting nanowire single-photon detectors,” Appl. Phys. Lett.90(10), 101110 (2007). [CrossRef]
  21. F. Marsili, F. Najafi, E. Dauler, F. Bellei, X. Hu, M. Csete, R. J. Molnar, and K. K. Berggren, “Single-photon detectors based on ultranarrow superconducting nanowires,” Nano Lett.11(5), 2048–2053 (2011). [CrossRef] [PubMed]
  22. B. Baek, A. E. Lita, V. Verma, and S. Nam, “Superconducting a-WxSi1-x nanowire single-photon detector with saturated internal quantum efficiency from visible to 1850 nm,” Appl. Phys. Lett.98(25), 251105 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited