OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 2 — Jan. 28, 2013
  • pp: 1606–1614

Enhanced plasmonic resonant excitation in a grating gated field-effect transistor with supplemental gates

Nan Guo, Wei-Da Hu, Xiao-Shuang Chen, Lin Wang, and Wei Lu  »View Author Affiliations


Optics Express, Vol. 21, Issue 2, pp. 1606-1614 (2013)
http://dx.doi.org/10.1364/OE.21.001606


View Full Text Article

Enhanced HTML    Acrobat PDF (1864 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

An alternative-grating gated AlGaN/GaN field-effect transistor (FET) is proposed by considering the slit regions to be covered by a highly doped semiconductor acting as supplemental gates. The plasmonic resonant absorption spectra are studied at THz frequencies using the FDTD method. The 2DEGs, under supplemental gates, modulated by a positive voltage, can make the excitation of the higher order plasmon modes under metallic fingers more efficient in comparison to ungated regions in common slit-grating gate transistors. Moreover, the supplemental gates can confine the electric field of dipole oscillation between metallic gate fingers under THz radiation. The competition of the near-field enhancement and screening effect of the supplemental gate fingers results in the intensity of the higher order plasmon resonances being maximized at increased doping concentration. Our results demonstrate the possibility of significant improvement in the excitation of plasmon resonances in FETs for THz detection.

© 2013 OSA

OCIS Codes
(040.0040) Detectors : Detectors
(050.2770) Diffraction and gratings : Gratings
(040.2235) Detectors : Far infrared or terahertz
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Detectors

History
Original Manuscript: November 1, 2012
Revised Manuscript: December 20, 2012
Manuscript Accepted: January 7, 2013
Published: January 15, 2013

Citation
Nan Guo, Wei-Da Hu, Xiao-Shuang Chen, Lin Wang, and Wei Lu, "Enhanced plasmonic resonant excitation in a grating gated field-effect transistor with supplemental gates," Opt. Express 21, 1606-1614 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-2-1606


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. S. Vitiello, D. Coquillat, L. Viti, D. Ercolani, F. Teppe, A. Pitanti, F. Beltram, L. Sorba, W. Knap, and A. Tredicucci, “Room-Temperature Terahertz Detectors Based on Semiconductor Nanowire Field-Effect Transistors,” Nano Lett.12(1), 96–101 (2012). [CrossRef] [PubMed]
  2. L. Vicarelli, M. S. Vitiello, D. Coquillat, A. Lombardo, A. C. Ferrari, W. Knap, M. Polini, V. Pellegrini, and A. Tredicucci, “Graphene field-effect transistors as room-temperature terahertz detectors,” Nat. Mater.11(10), 865–871 (2012). [CrossRef] [PubMed]
  3. M. S. Vitiello, L. Viti, L. Romeo, D. Ercolani, G. Scalari, J. Faist, F. Beltram, L. Sorba, and A. Tredicucci, “Semiconductor nanowires for highly sensitive, room-temperature detection of terahertz quantum cascade laser emission,” Appl. Phys. Lett.100(24), 241101 (2012). [CrossRef]
  4. A. Pitanti, D. Coquillat, D. Ercolani, L. Sorba, F. Teppe, W. Knap, G. De Simoni, F. Beltram, A. Tredicucci, and M. S. Vitiello, “Terahetz detection by heterostructed InAs/InSb nanowire based field effect transistors,” Appl. Phys. Lett.101(14), 141103 (2012). [CrossRef]
  5. A. R. Davoyan, V. V. Popov, and S. A. Nikitov, “Tailoring Terahertz Near-Field Enhancement via Two-Dimensional Plasmons,” Phys. Rev. Lett.108(12), 127401 (2012). [CrossRef] [PubMed]
  6. V. V. Popov, D. V. Fateev, T. Otsuji, Y. M. Meziani, D. Coquillat, and W. Knap, “Plasmonic terahertz detection by a double-grating-gate field-effect transistor structure with an asymmetric unit cell,” Appl. Phys. Lett.99(24), 243504 (2011). [CrossRef]
  7. A. V. Muravjov, D. B. Veksler, V. V. Popov, O. V. Polischuk, N. Pala, X. Hu, R. Gaska, H. Saxena, R. E. Peale, and M. S. Shur, “Temperature dependence of plasmonic terahertz absorption in grating-gate gallium-nitride transistor structures,” Appl. Phys. Lett.96(4), 042105 (2010). [CrossRef]
  8. D. V. Fateev, V. V. Popov, and M. S. Shur, “Transformation of the Plasmon Spectrum in a Grating-Gate Transistor Structure with Spatially Modulated Two-Dimensional Electron Channel,” Semiconductors44(11), 1406–1413 (2010). [CrossRef]
  9. T. Nishimura, N. Magome, and T. Otsuji, “An Intensity Modulator for Terahertz Electromagnetic Waves Utilizing Two-Dimensional Plasmon Resonance in a Dual-Grating-Gate High-Electron-Mobility Transistor,” Jpn. J. Appl. Phys.49(5), 054301 (2010). [CrossRef]
  10. V. V. Popov, D. V. Fateev, O. V. Polischuk, and M. S. Shur, “Enhanced electromagnetic coupling between terahertz radiation and plasmons in a grating-gate transistor structure on membrane substrate,” Opt. Express18(16), 16771–16776 (2010). [CrossRef] [PubMed]
  11. D. Coquillat, S. Nadar, F. Teppe, N. Dyakonova, S. Boubanga-Tombet, W. Knap, T. Nishimura, T. Otsuji, Y. M. Meziani, G. M. Tsymbalov, and V. V. Popov, “Room temperature detection of sub-terahertz radiation in double-grating-gate transistors,” Opt. Express18(6), 6024–6032 (2010). [CrossRef] [PubMed]
  12. L. Wang, X. S. Chen, W. D. Hu, J. Wang, J. Wang, X. D. Wang, and W. Lu, “The plasmonic resonant absorption in GaN double-channel high electron mobility transistors,” Appl. Phys. Lett.99(6), 063502 (2011). [CrossRef]
  13. L. Wang, W. D. Hu, J. Wang, X. D. Wang, S. W. Wang, X. S. Chen, and W. Lu, “Plasmon resonant excitation in grating-gated AlN barrier transistors at terahertz frequency,” Appl. Phys. Lett.100(12), 123501 (2012). [CrossRef]
  14. T. Otsuji, M. Hanabe, T. Nishimura, and E. Sano, “A grating-bicoupled plasma-wave photomixer with resonant-cavity enhanced structure,” Opt. Express14(11), 4815–4825 (2006). [CrossRef] [PubMed]
  15. E. A. Shaner, M. Lee, M. C. Wanke, A. D. Grine, J. L. Reno, and S. J. Allen, “Single-quantum-well grating-gated terahertz plasmon detectors,” Appl. Phys. Lett.87(19), 193507 (2005). [CrossRef]
  16. X. G. Peralta, S. J. Allen, M. C. Wanke, N. E. Harff, J. A. Simmons, M. P. Lilly, J. L. Reno, P. J. Burke, and J. P. Eisenstein, “Terahertz photoconductivity and plasmon modes in double-quantum-well field-effect transistors,” Appl. Phys. Lett.81(9), 1627–1629 (2002). [CrossRef]
  17. V. V. Popov, “Plasmon Excitation and Plasmonic Detection of Terahertz Radiation in the Grating-Gate Field-Effect-Transistor Structures,” J. Infrared Milli. Terahz. Waves32(10), 1178–1191 (2011). [CrossRef]
  18. A. E. I. Fatimy, F. Teppe, N. Dyakonova, W. Knap, D. Seliuta, G. Valušis, A. Shchepetov, Y. Roelens, S. Bollaert, A. Cappy, and S. Rumyantsev, “Resonant and voltage-tunable terahertz detection in InGaAs/InP nanometer transistors,” Appl. Phys. Lett.89(13), 131926 (2006). [CrossRef]
  19. M. Dyakonov and M. S. Shur, “Plasma wave electronics: novel terahertz devices using two dimensional electron fluid,” IEEE Trans. Electron. Dev.43(10), 1640–1645 (1996). [CrossRef]
  20. V. V. Popov, G. M. Tsymbalov, T. V. Teperik, D. V. Fateev, and M. S. Shur, “Terahertz Excitation of the Higher-Order Plasmon Modes in Field-Effect Transistor Arrays with Common and Separate Two-Dimensional Electron Channels,” Bull. Russ. Acad. Sci., Physics71(1), 89–92 (2007). [CrossRef]
  21. V. V. Popov, A. N. Koudymov, M. Shur, and O. V. Polischuk, “Tuning of ungated plasmons by a gate in the field-effect transistor with two-dimensional electron channel,” J. Appl. Phys.104(2), 024508 (2008). [CrossRef]
  22. V. V. Popov, M. S. Shur, G. M. Tsymbalov, and D. V. Fateev, “Higher-order plasmon resonances in GaN-based field-effect transistor arrays,” Int. J. High Speed Electron. Syst.17(3), 557–566 (2007). [CrossRef]
  23. V. V. Popov, G. M. Tsymbalov, D. V. Fateev, and M. S. Shur, “Cooperative absorption of terahertz radiation by plasmon modes in an array of field-effect transistors with two-dimensional electron channel,” Appl. Phys. Lett.89(12), 123504 (2006). [CrossRef]
  24. Y. Zeng, Y. Fu, M. Bengtsson, X. S. Chen, W. Lu, and H. Ågren, “Finite-difference time-domain simulations of exciton-polariton resonances in quantum-dot arrays,” Opt. Express16(7), 4507–4519 (2008). [CrossRef] [PubMed]
  25. V. V. Popov, O. V. Polischuk, T. V. Teperik, X. G. Peralta, S. J. Allen, N. J. M. Horing, and M. C. Wanke, “Absorption of terahertz radiation by plasmon modes in a grid-gated double-quantum-well field-effect transistor,” J. Appl. Phys.94(5), 3556–3562 (2003). [CrossRef]
  26. S. J. Allen, D. C. Tsui, and F. DeRosa, “Frequency Dependence of the Electron Conductivity in the Silicon Inversion Layer in the Metallic and Localized Regimes,” Phys. Rev. Lett.35(20), 1359–1362 (1975). [CrossRef]
  27. K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Trans. Antenn. Propag.AP-14, 302–307 (1966).
  28. R. J. Luebbers, F. Hunsberger, and K. S. Kunz, “A frequency-dependent finite-difference time-domain formulation for transient propagation in plasma,” IEEE Trans. Antenn. Propag.39(1), 29–34 (1991). [CrossRef]
  29. J. Wang, X. S. Chen, Z. F. Li, and W. Lu, “Study of grating performance for quantum well photodetectors,” J. Opt. Soc. Am. B27(11), 2428–2432 (2010). [CrossRef]
  30. J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B73(3), 035407 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited