OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 2 — Jan. 28, 2013
  • pp: 1639–1644

Plasmonic analog of microstrip transmission line and effect of thermal annealing on its propagation loss

Yiting Chen, Jing Wang, Xi Chen, Min Yan, and Min Qiu  »View Author Affiliations

Optics Express, Vol. 21, Issue 2, pp. 1639-1644 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1178 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We fabricated a plasmonic analog of the microwave microstrip transmission line and measured its propagation loss before and after thermal annealing. It is found that its propagation loss at 980 nm wavelength can be reduced by more than 50%, from 0.45 to 0.20 dB/μm, after thermal annealing at 300 °C. The reduction in loss can be attributed to the improved gold surface condition and probably also to the change in the metal’s inner structure. Less evident loss reduction is noticed at 1550 nm, which is owing to extremely small portion of the modal electric field located in the metal regions at this wavelength.

© 2013 OSA

OCIS Codes
(120.6810) Instrumentation, measurement, and metrology : Thermal effects
(220.3740) Optical design and fabrication : Lithography
(230.7370) Optical devices : Waveguides
(240.6680) Optics at surfaces : Surface plasmons
(260.3910) Physical optics : Metal optics
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Optics at Surfaces

Original Manuscript: November 26, 2012
Revised Manuscript: December 23, 2012
Manuscript Accepted: December 23, 2012
Published: January 15, 2013

Yiting Chen, Jing Wang, Xi Chen, Min Yan, and Min Qiu, "Plasmonic analog of microstrip transmission line and effect of thermal annealing on its propagation loss," Opt. Express 21, 1639-1644 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature424, 824–830 (2003). [CrossRef] [PubMed]
  2. D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics4, 83–91 (2010). [CrossRef]
  3. B. Steinberger, A. Hohenau, H. Ditlbacher, A. L. Stepanov, A. Drezet, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Dielectric stripes on gold as surface plasmon waveguides,” Appl. Phys. Lett.88, 094104 (2006). [CrossRef]
  4. T. Holmgaard and S. I. Bozhevolnyi, “Theoretical analysis of dielectric-loaded surface plasmon-polariton waveguides,” Phys. Rev. B75, 245405 (2007). [CrossRef]
  5. M. Quinten, A. Leitner, J. R. Krenn, and F. R. Aussenegg, “Electromagnetic energy transport via linear chains of silver nanoparticles,” Opt. Lett.23, 1331–1333 (1998). [CrossRef]
  6. S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater.2, 229–232 (2003). [CrossRef] [PubMed]
  7. D. F. P. Pile, T. Ogawa, D. K. Gramotnev, T. Okamoto, M. Haraguchi, M. Fukui, and S. Matsuo, “Theoretical and experimental investigation of strongly localized plasmons on triangular metal wedges for subwavelength waveguiding,” Appl. Phys. Lett.87, 061106 (2005). [CrossRef]
  8. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature440, 508–511 (2006). [CrossRef] [PubMed]
  9. M. Yan and M. Qiu, “Guided plasmon polariton at 2D metal corners,” J. Opt. Soc. Am. B24, 2333–2342 (2007). [CrossRef]
  10. J. Takahara, S. Yamagishi, H. Taki, A. Morimoto, and T. Kobayashi, “Guiding of a one-dimensional optical beam with nanometer diameter,” Opt. Lett.22, 475–477 (1997). [CrossRef] [PubMed]
  11. R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics2, 496 – 500 (2008). [CrossRef]
  12. M. Yan and M. Qiu, “Compact optical waveguides based on hybrid index and surface- plasmon-polariton guidance mechanisms,” Active and Passive Electronic Components2007, 52461 (2007). [CrossRef]
  13. L. Liu, Z. Han, and S. He, “Novel surface plasmon waveguide for high integration,” Opt. Express13, 6645–6650 (2005). [CrossRef] [PubMed]
  14. D. F. P. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. OKamoto, M. Haraguchi, and M. Fukui, “Two-dimensionally localized modes of a nanoscale gap plasmon waveguide,” Appl. Phys. Lett.87, 261114 (2005). [CrossRef]
  15. M. C. Gather, K. Meerholz, N. Danz, and K. Leosson, “Net optical gain in a plasmonic waveguide embedded in a fluorescent polymer,” Nat. Photonics4, 457–461 (2010). [CrossRef]
  16. M. Rocca, F. Moresco, and U. Valbusa, “Temperature dependence of surface plasmons on ag(001),” Phys. Rev. B45, 1399–1402 (1992). [CrossRef]
  17. C. Rhodes, S. Franzen, J. P. Maria, M. Losego, D. N. Leonard, B. Laughlin, G. Duscher, and S. Weibel, “Surface plasmon resonance in conducting metal oxides,” J. Appl. Phys.100, 054905 (2006). [CrossRef]
  18. S. Kumar, Y. Lu, A. Huck, and U. L. Andersen, “Propagation of plasmons in designed single crystalline silver nanostructures,” Opt. Express20, 24614–24622 (2012). [CrossRef] [PubMed]
  19. P. Kusar, C. Gruber, A. Hohenau, and J. R. Krenn, “Measurement and Reduction of Damping in Plasmonic Nanowires,” Nano Lett.12, 661–665 (2012). [CrossRef] [PubMed]
  20. M. A. Ordal, R. J. Bell, R. W. Alexander, L. L. Long, and M. R. Querry, “Optical properties of fourteen metals in the infrared and far infrared: Al, Co, Cu, Au, Fe, Pb, Mo, Ni, Pd, Pt, Ag, Ti, V, and W.,” Appl. Opt.24, 4493–4499 (1985). [CrossRef] [PubMed]
  21. Y. Ma, X. Li, H. Yu, L. Tong, Y. Gu, and Q. Gong, “Direct measurement of propagation losses in silver nanowires,” Opt. Lett.35, 1160–1162 (2010). [CrossRef] [PubMed]
  22. Q. Li, S. Wang, Y. Chen, M. Yan, L. Tong, and M. Qiu, “Experimental demonstration of plasmon propagation, coupling, and splitting in silver nanowire at 1550-nm wavelength,” IEEE of Selected Topics J. in Quantum Electronics17, 1107–1111 (2011). [CrossRef]
  23. D. Porath, Y. Goldstein, A. Grayevsky, and O. Millo, “Scanning tunneling microscopy studies of annealing of gold films,” Surf. Sci.321, 81–88 (1994). [CrossRef]
  24. M. Bechelany, X. Maeder, J. Riesterer, J. Hankache, D. Lerose, S. Christiansen, J. Michler, and L. Philippe, “Synthesis Mechanisms of Organized Gold Nanoparticles: Influence of Annealing Temperature and Atmosphere,” Cryst. Growth Des.10, 587–596 (2010). [CrossRef]
  25. Y. Golan, L. Margulis, and I. Rubinstein, “Vacuum-deposited gold films,” Surf. Sci.264, 312–326 (1992). [CrossRef]
  26. C.E.D. Chidsey, D.N. Loiacono, T. Sleator, and S. Nakahara, “STM study of the surface morphology of gold on mica,” Surf. Sci.200, 45–66 (1988). [CrossRef]
  27. T. Andersson and C. G. Granqvist, “Morphology and size distributions of islands in discontinuous films,” J. Appl. Phys.48, 1673–1679 (1977). [CrossRef]
  28. M. Bowker, “Surface science: The going rate for catalysts,” Nat. Mater.1, 205–206 (2002). [CrossRef]
  29. P. Meakin, “The growth of rough surfaces and interfaces,” Phys. Rep.235, 189–289 (1993). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited