OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 2 — Jan. 28, 2013
  • pp: 1645–1655

Photostimulated control of laser transmission through photoresponsive cholesteric liquid crystals

Jonathan P. Vernon, Aaron D. Zhao, Rafael Vergara, Hyunmin Song, Vincent P. Tondiglia, Timothy J. White, Nelson V. Tabiryan, and Timothy J. Bunning  »View Author Affiliations


Optics Express, Vol. 21, Issue 2, pp. 1645-1655 (2013)
http://dx.doi.org/10.1364/OE.21.001645


View Full Text Article

Enhanced HTML    Acrobat PDF (1099 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Cholesteric liquid crystals (CLCs) are selectively reflective optical materials, the color of which can be tuned via electrical, thermal, mechanical, or optical stimuli. In this work, we show that self-regulation of the transmission of a circularly polarized incident beam can occur upon phototuning of the selective reflection peak of a photosensitive CLC mixture towards the pump wavelength. The autonomous behavior occurs as the red-shifting selective reflection peak approaches the wavelength of the incident laser light. Once the red-edge of the CLC bandgap and incident laser wavelength overlap, the rate of tuning dramatically slows. The dwell time (i.e., duration of the overlap of stimulus wavelength with CLC bandgap) is shown to depend on the radiation wavelength, polarization, and intensity. Necessary conditions for substantial dwell time of the CLC reflection peak at the pump beam wavelength include irradiation with low intensity light (~1mW/cm2) and the utilization of circularly polarized light of the same handedness as the helical structure within the CLC. Monitoring the optical properties in both reflection and transmission geometries elucidates differences associated with attenuation of the light through the thickness of the CLC film.

© 2013 OSA

OCIS Codes
(160.3710) Materials : Liquid crystals
(160.4890) Materials : Organic materials
(160.6840) Materials : Thermo-optical materials
(230.5440) Optical devices : Polarization-selective devices
(160.5335) Materials : Photosensitive materials

ToC Category:
Materials

History
Original Manuscript: November 28, 2012
Revised Manuscript: December 11, 2012
Manuscript Accepted: December 20, 2012
Published: January 15, 2013

Citation
Jonathan P. Vernon, Aaron D. Zhao, Rafael Vergara, Hyunmin Song, Vincent P. Tondiglia, Timothy J. White, Nelson V. Tabiryan, and Timothy J. Bunning, "Photostimulated control of laser transmission through photoresponsive cholesteric liquid crystals," Opt. Express 21, 1645-1655 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-2-1645


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. W. Haas, J. Adams, and J. Wysocki, “Interaction between UV radiation and cholesteric liquid crystals,” Mol. Cryst. Liq. Cryst. (Phila. Pa.)7(1), 371–379 (1969). [CrossRef]
  2. E. Sackmann, “Photochemically induced reversible color changes in cholesteric liquid crystals,” J. Am. Chem. Soc.93(25), 7088–7090 (1971). [CrossRef]
  3. N. Tamaoki, “Cholesteric liquid crystals for color information technology,” Adv. Mater. (Deerfield Beach Fla.)13(15), 1135–1147 (2001). [CrossRef]
  4. T. J. White, M. E. McConney, and T. J. Bunning, “Dynamic color in stimuli responsive cholesteric liquid crystals,” J. Mater. Chem.20(44), 9832–9847 (2010). [CrossRef]
  5. N. Tamaoki and T. Kamei, “Reversible photo-regulation of the properties of liquid crystals doped with photochromic compounds,” J. Photochem. Photobiol. Chem.11(2-3), 47–61 (2010). [CrossRef]
  6. B. Fan, S. Vartak, J. N. Eakin, and S. M. Faris, “Surface anchoring effects on spectral broadening of cholesteric liquid crystal films,” J. Appl. Phys.104(2), 023108 (2008). [CrossRef]
  7. J. P. Vernon, U. A. Hrozhyk, S. V. Serak, V. P. Tondiglia, T. J. White, N. V. Tabiryan, and T. J. Bunning, “Optically reconfigurable reflective/scattering states enabled with photosensitive cholesteric liquid crystal cells,” Adv. Opt. Mater., (2013). [CrossRef]
  8. T. Ikeda and O. Tsutsumi, “Optical switching and image storage by means of azobenzene liquid-crystal films,” Science268(5219), 1873–1875 (1995). [CrossRef] [PubMed]
  9. U. A. Hrozhyk, S. V. Serak, N. V. Tabiryan, and T. J. Bunning, “Photoinduced isotropic state of cholesteric liquid crystals: novel dynamic photonic materials,” Adv. Mater. (Deerfield Beach Fla.)19(20), 3244–3247 (2007). [CrossRef]
  10. A. Chanishvili, G. Chilaya, G. Petriashvili, and D. Sikharulidze, “Light induced effects in cholesteric mixtures with a photosensitive nematic host,” Mol. Crys. Liq. Cryst.409(1), 209–218 (2004). [CrossRef]
  11. T. Kosa, L. Sukhomlinova, L. Su, B. Taheri, T. J. White, and T. J. Bunning, “Light-induced liquid crystallinity,” Nature485(7398), 347–349 (2012). [CrossRef] [PubMed]
  12. Y. Yokoyama and T. Sagisaka, “Reversible control of pitch of induced cholesteric liquid crystal by optically active photochromic fulgide derivatives,” Chem. Lett.26(8), 687–688 (1997). [CrossRef]
  13. R. Eelkema, “Photo-responsive doped cholesteric liquid crystals,” Liq. Crys.38(11-12), 1641–1652 (2011). [CrossRef]
  14. V. Vinogradov, A. Khizhnyak, L. Kutulya, Y. Reznikov, and V. Reshetnyak, “Photoinduced charge of cholesteric Lc-Pitch,” Mol. Cryst. Liq. Cryst. (Phila. Pa.)192, 273–278 (1990).
  15. B. L. Feringa, R. A. van Delden, N. Koumura, and E. M. Geertsema, “Chiroptical molecular switches,” Chem. Rev.100(5), 1789–1816 (2000). [CrossRef] [PubMed]
  16. G. Chilaya, A. Chanishvili, G. Petriashvili, R. Barberi, R. Bartolino, M. P. De Santo, M. A. Matranga, and P. Collings, “Light control of cholesteric liquid crystals using azoxy-based host materials,” Mol. Cryst. Liq. Cryst. (Phila. Pa.)453(1), 123–140 (2006). [CrossRef]
  17. T. J. White, R. L. Bricker, L. V. Natarajan, N. V. Tabiryan, L. Green, Q. Li, and T. J. Bunning, “Phototunable azobenzene cholesteric liquid crystal with 2000 nm range,” Adv. Funct. Mater.19(21), 3848 (2009). [CrossRef]
  18. U. A. Hrozhyk, S. V. Serak, N. V. Tabiryan, and T. J. Bunning, “Phototunable reflection notches of cholesteric liquid crystals,” J. Appl. Phys.104(6), 063102 (2008). [CrossRef]
  19. I. Gvozdovskyy, O. Yaroshchuk, and M. Serbina, “Photoinduced nematic-cholesteric structural transitions in liquid crystal cells with homeotropic anchoring,” Mol. Cryst. Liq. Cryst.546, 1672–1678 (2011).
  20. I. Gvozdovskyy, O. Yaroshchuk, M. Serbina, and R. Yamaguchi, “Photoinduced helical inversion in cholesteric liquid crystal cells with homeotropic anchoring,” Opt. Express20(4), 3499–3508 (2012). [CrossRef] [PubMed]
  21. U. A. Hrozhyk, S. V. Serak, N. V. Tabiryan, T. J. White, and T. J. Bunning, “Optically switchable, rapidly relaxing cholesteric liquid crystal reflectors,” Opt. Express18(9), 9651–9657 (2010). [CrossRef] [PubMed]
  22. J. C. Bhatt, S. S. Keast, M. E. Neubert, and R. G. Petschek, “Synthesis of highly chiral multisubstituted binaphthyl compounds as potential new biaxial nematic and NLO materials,” Liq. Cryst.18(3), 367–380 (1995). [CrossRef]
  23. Q. Li, L. Green, N. Venkataraman, I. Shiyanovskaya, A. Khan, A. Urbas, and J. W. Doane, “Reversible photoswitchable axially chiral dopants with high helical twisting power,” J. Am. Chem. Soc.129(43), 12908–12909 (2007). [CrossRef] [PubMed]
  24. S. V. Serak, N. V. Tabiryan, and T. J. Bunning, “Nonlinear transimission of photosensitive cholesteric liquid crystals due to spectral bandwidth auto-tuning or restoration,” J. Nonlinear Opt. Phys. Mater.16(04), 471–483 (2007). [CrossRef]
  25. Q. Li, Y. Li, J. Ma, D.-K. Yang, T. J. White, and T. J. Bunning, “Directing dynamic control of red, green, and blue reflection enabled by a light-driven self-organized helical superstructure,” Adv. Mater. (Deerfield Beach Fla.)23(43), 5069–5073 (2011). [CrossRef] [PubMed]
  26. T. J. White, A. S. Freer, N. V. Tabiryan, and T. J. Bunning, “Photoinduced broadening of cholesteric liquid crystal reflectors,” J. Appl. Phys.107(7), 073110 (2010). [CrossRef]
  27. N. I. Shkolnikova, L. A. Kutulya, N. S. Pivnenko, R. I. Zubatyuk, and O. V. Shishkin, “Relationship between the temperature dependence of the induced helical pitch and the anisometry of molecules of chiral dopants,” Crys. Rep.50(6), 1005–1011 (2005). [CrossRef]
  28. C. Ruslim and K. Ichimura, “Conformational effect on macroscopic chirality modification of cholesteric mesophases by photochromic azobenzene dopants,” J. Phys. Chem. B104(28), 6529–6535 (2000). [CrossRef]
  29. M. Kawamoto, N. Shiga, T. Aoki, and T. Wada, “Dynamic control of liquid-crystalline helical structures with the aid of light- and temperature-driven multistable chiral materials,” Liquid Crystals XIII ed. I.C. Khoo,Proc. SPIE7414, 74140E, 74140E-9 (2009). [CrossRef]
  30. Y. Huang, Y. Zhou, C. Doyle, and S.-T. Wu, “Tuning the photonic band gap in cholesteric liquid crystals by temperature-dependent dopant solubility,” Opt. Express14(3), 1236–1242 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited