OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 2 — Jan. 28, 2013
  • pp: 1656–1668

Resolution limits for imaging through multi-mode fiber

Reza Nasiri Mahalati, Ruo Yu Gu, and Joseph M. Kahn  »View Author Affiliations

Optics Express, Vol. 21, Issue 2, pp. 1656-1668 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1026 KB) | SpotlightSpotlight on Optics

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We experimentally demonstrate endoscopic imaging through a multi-mode fiber (MMF) in which the number of resolvable image features approaches four times the number of spatial modes per polarization propagating in the fiber. In our method, a sequence of random field patterns is input to the fiber, generating a sequence of random intensity patterns at the output, which are used to sample an object. Reflected power values are returned through the fiber and linear optimization is used to reconstruct an image. The factor-of-four resolution enhancement is due to mixing of modes by the squaring inherent in field-to-intensity conversion. The incoherent point-spread function (PSF) at the center of the fiber output plane is an Airy disk equivalent to the coherent PSF of a conventional diffraction-limited imaging system having a numerical aperture twice that of the fiber. All previous methods for imaging through MMF can only resolve a number of features equal to the number of modes. Most of these methods use localized intensity patterns for sampling the object and use local image reconstruction.

© 2013 OSA

OCIS Codes
(110.2350) Imaging systems : Fiber optics imaging
(110.2990) Imaging systems : Image formation theory
(180.0180) Microscopy : Microscopy
(110.3010) Imaging systems : Image reconstruction techniques

ToC Category:
Imaging Systems

Original Manuscript: December 3, 2012
Revised Manuscript: January 4, 2013
Manuscript Accepted: January 4, 2013
Published: January 15, 2013

Virtual Issues
Vol. 8, Iss. 2 Virtual Journal for Biomedical Optics
March 6, 2013 Spotlight on Optics

Reza Nasiri Mahalati, Ruo Yu Gu, and Joseph M. Kahn, "Resolution limits for imaging through multi-mode fiber," Opt. Express 21, 1656-1668 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Yariv, “Three-dimensional pictorial transmission in optical fibers,” Appl. Phys. Lett.28(2), 88–89 (1976). [CrossRef]
  2. B. Fischer and S. Sternklar, “Image transmission and interferometry with multimode fibers using self-pumped phase conjugation,” Appl. Phys. Lett.46(2), 113–114 (1985). [CrossRef]
  3. K. K. Tsia, K. Goda, and B. Jalali, “Simultaneous mechanical-scan-free confocal microscopy and laser microsurgery,” Opt. Lett.34, 2099–2101 (2009). [CrossRef] [PubMed]
  4. I. N. Papadopoulos, S. Farahi, C. Moser, and D. Psaltis, “Focusing and scanning light through a multimode optical fiber using digital phase conjugation,” Opt. Express20(10), 10583–10590 (2012). [CrossRef] [PubMed]
  5. S. Bianchi and R. Di Leonardo, “A multi-mode fiber probe for holographic micromanipulation and microscopy,” Lab Chip12(3), 635–639 (2012). [CrossRef] [PubMed]
  6. T. Čižmár and K. Dholakia, “Exploiting multimode waveguides for pure fiber-based imaging,” Nat. Commun.3, 1027 (2012). [CrossRef]
  7. L. Yang, A. Raighne, E. M. McCabe, L. A. Dunbar, and T. Scharf, “Confocal microscopy using variable-focal-length microlenses and an optical fiber bundle,” Appl. Opt.44(28), 5928–5936 (2005). [CrossRef] [PubMed]
  8. P. M. Lane, A. L. P. Dlugan, R. Richards-Kortum, and C. E. Macaulay, “Fiber-optic confocal microscopy using a spatial light modulator,” Opt. Lett.25(24), 1780–1782 (2000). [CrossRef] [PubMed]
  9. M. T. Myaing, D. J. MacDonald, and X. Li, “Fiber-optic scanning two-photon fluorescence endoscope,” Opt. Lett.31(8), 1076–1078 (2006). [CrossRef] [PubMed]
  10. L. Fu, X. Gan, and M. Gu, “Nonlinear optical microscopy based on double-clad photonic crystal fibers,” Opt. Express13(14), 5528–5534 (2005). [CrossRef] [PubMed]
  11. D. Bird and M. Gu, “Two-photon fluorescence endoscopy with a micro-optic scanning head,” Opt. Lett.28(17), 1552–1554 (2003). [CrossRef] [PubMed]
  12. K. M. Tan, M. Mazilu, T. H. Chow, W. M. Lee, K. Taguichi, B. K. Ng, W. Sibbett, C. S. Herrington, C. T. A. Brown, and K. Dholakia, “In-fiber common-path optical coherence tomography using a conical-tip fiber,” Opt. Express17(4), 2375–2384 (2009). [CrossRef] [PubMed]
  13. Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, and W. Choi, “Scanner-free and wide-field endoscopic imaging by using a single multimode optical fiber,” Phys. Rev. Lett.109(20), 203901 (2012). [CrossRef] [PubMed]
  14. B. A. Flusberg, E. D. Cocker, W. Piyawattanametha, J. C. Jung, E. L. M. Cheung, and M. J. Schnitzer, “Fiber-optic fluorescence imaging,” Nat. Methods2(12), 941–950 (2005). [CrossRef] [PubMed]
  15. R. N. Mahalati, D. Askarov, J. P. Wilde, and J. M. Kahn, “Adaptive control of input field to achieve desired output intensity profile in multimode fiber with random mode coupling,” Opt. Express20(13), 14321–14337 (2012). [CrossRef] [PubMed]
  16. I. M. Vellekoop and A. P. Mosk, “Phase control algorithms for focusing light through turbid media,” Opt. Commun.281(11), 3071–3080 (2008). [CrossRef]
  17. I. M. Vellekoop and A. P. Mosk, “Focusing coherent light through opaque strongly scattering media,” Opt. Lett.32(16), 2309–2311 (2007). [CrossRef] [PubMed]
  18. R. Di Leonardo and S. Bianchi, “Hologram transmission through multi-mode optical fibers,” Opt. Express19(1), 247–254 (2011). [CrossRef] [PubMed]
  19. S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett.104(10), 100601 (2010). [CrossRef] [PubMed]
  20. T. Čižmár and K. Dholakia, “Shaping the light transmission through a multimode optical fibre: complex transformation analysis and applications in biophotonics,” Opt. Express19(20), 18871–18884 (2011). [CrossRef] [PubMed]
  21. I. M. Vellekoop and A. P. Mosk, “Universal optimal transmission of light through disordered materials,” Phys. Rev. Lett.101(12), 120601 (2008). [CrossRef] [PubMed]
  22. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill Science/Engineering/Math, 1996).
  23. J. A. Buck, Fundamentals of Optical Fibers, 2nd Ed. (John Wiley & Sons, Inc., New Jersey, 2004).
  24. S. P. Boyd and L. Vandenberghe, Convex Optimization (Cambridge University Press, New York, 2004).
  25. D. Marcuse, “Excitation of parabolic-index fibers with incoherent sources,” Bell Syst. Tech. J.54, 1507–1530 (1975).
  26. D. Gloge, “Weakly guiding fibers,” Appl. Opt.10(10), 2252–2258 (1971). [CrossRef] [PubMed]
  27. G. Szegö, Orthogonal Polynomials (American Mathematical Society, Rhode Island, 1939).
  28. P. Ferraro, A. Wax, and Z. Zalevsky, Coherent Light Microscopy (Springer, New York, 2011).
  29. M. Born and E. Wolf, Principles of Optics (Cambridge University Press, Cambridge, 1999).
  30. A. V. Oppenheim, R. W. Schafer, and J. R. Buck, Discrete-Time Signal Processing (Prentice Hall, Upper Saddle River, New Jersey, 1999).
  31. T. Lauer, “Deconvolution with a spatially-variant PSF,” in Proceedings of SPIE Conference on Astronomical Data Analysis II (International Society for Optics and Photonics, Waikoloa, Hawaii, 2002) 167–173.
  32. X. Shen, J. M. Kahn, and M. A. Horowitz, “Compensation for multimode fiber dispersion by adaptive optics,” Opt. Lett.30(22), 2985–2987 (2005). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited