OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 2 — Jan. 28, 2013
  • pp: 1669–1674

Theories and applications of chromatic dispersion penalty mitigation in all optical OFDM transmission system

Malaz Kserawi, Satoshi Shimizu, Naoya Wada, Ahmed Galib Reza, and June-Koo Kevin Rhee  »View Author Affiliations

Optics Express, Vol. 21, Issue 2, pp. 1669-1674 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1618 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Fiber chromatic dispersion (CD) in optical OFDM transmission degrades carrier orthogonality, resulting in a system penalty. Such penalty can be mitigated by per-carrier delay precompensation and spectrum filtering. We present a theoretical model to investigate the CD impairment in all-optical OFDM system, and demonstrate experimentally that both methods restore performance without overhead or guard interval.

© 2013 OSA

OCIS Codes
(060.2330) Fiber optics and optical communications : Fiber optics communications
(060.4230) Fiber optics and optical communications : Multiplexing
(060.7140) Fiber optics and optical communications : Ultrafast processes in fibers
(070.2465) Fourier optics and signal processing : Finite analogs of Fourier transforms

ToC Category:
Subsystems for Optical Networks

Original Manuscript: October 3, 2012
Revised Manuscript: November 9, 2012
Manuscript Accepted: November 10, 2012
Published: January 16, 2013

Virtual Issues
European Conference on Optical Communication 2012 (2012) Optics Express

Malaz Kserawi, Satoshi Shimizu, Naoya Wada, Ahmed Galib Reza, and June-Koo Kevin Rhee, "Theories and applications of chromatic dispersion penalty mitigation in all optical OFDM transmission system," Opt. Express 21, 1669-1674 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. Sanjoh, E. Yamada, and Y. Yoshikuni, “Optical orthogonal frequency division multiplexing using frequency/time domain filtering for high spectral efficiency up to 1 bit/s/Hz,” Optical Fiber Communication Conference (OFC) ThD1, (2002).
  2. K. Lee, C. T. D. Thai, and J.-K. K. Rhee, “All optical discrete Fourier transform processor for 100 Gbps OFDM transmission,” Opt. Express16(6), 4023–4028 (2008). [CrossRef] [PubMed]
  3. K. Takiguchi, T. Kitoh, A. Mori, M. Oguma, and H. Takahashi, “Optical orthogonal frequency division multiplexing demultiplexer using slab star coupler-based optical discrete Fourier transform circuit,” Opt. Lett.36(7), 1140–1142 (2011). [CrossRef] [PubMed]
  4. G. Cincotti, “Characterization of a full encoder/decoder in the AWG configuration for code-based photonic routers-Part I: Modeling and design,” J. Lightwave Technol.24, 103–112 (2006). [CrossRef]
  5. I. Kang, M. Rasras, X. Liu, S. Chandrasekhar, M. Cappuzzo, L. T. Gomez, Y. F. Chen, L. Buhl, S. Cabot, and J. Jaques, “All-optical OFDM transmission of 7 x 5-Gb/s data over 84-km standard single-mode fiber without dispersion compensation and time gating using a photonic-integrated optical DFT device,” Opt. Express19(10), 9111–9117 (2011). [CrossRef] [PubMed]
  6. H. Chen, M. Chen, and S. Xie, “All-optical sampling orthogonal frequency-division multiplexing scheme for high-speed transmission system,” J. Lightwave Technol.27(21), 4848–4854 (2009). [CrossRef]
  7. S. Yamamoto, K. Yonenaga, A. Sahara, F. Inuzuka, and A. Takada, “Achievement of subchannel frequency spacing less than symbol rate and improvement of dispersion tolerance in optical OFDM transmission,” J. Lightwave Technol.28(1), 157–163 (2010). [CrossRef]
  8. D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s−1 line-rate super-channel transmission utilizing all-optical fast Fourier transform processing,” Nat. Photonics5(6), 364–371 (2011). [CrossRef]
  9. M. E. Marhic, “Discrete Fourier transforms by single-mode star networks,” Opt. Lett.12(1), 63–65 (1987). [CrossRef] [PubMed]
  10. G. Cincotti, “Fiber wavelet filters,” J. Quantum Electron.38(10), 1420–1427 (2002). [CrossRef]
  11. Z. Wang, K. S. Kravtsov, Y.-K. Huang, and P. R. Prucnal, “Optical FFT/IFFT circuit realization using arrayed waveguide gratings and the applications in all-optical OFDM system,” Opt. Express19(5), 4501–4512 (2011). [CrossRef] [PubMed]
  12. S. Shimizu, G. Cincotti, and N. Wada, “Demonstration of 8x12.5 Gbit/s all-optical OFDM system with an arrayed waveguide grating and waveform reshaping,” in European Conference and Exhibition on Optical Communication (ECOC) (Optical Society of America, 2012), Th.1.A.2.
  13. J.-K. K. Rhee, N. Cvijetic, N. Wada, and T. Wang, “Optical orthogonal frequency division multiplexed transmission using all-optical discrete Fourier transform,” Laser and Photon. Rev. (invited and submitted).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited