OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 2 — Jan. 28, 2013
  • pp: 1675–1686

Optimization of the electroluminescence from SiNx-based light-emitting devices by modulating the size and morphology of silver nanostructures

Feng Wang, Dongsheng Li, Lu Jin, Changrui Ren, Deren Yang, and Duanlin Que  »View Author Affiliations


Optics Express, Vol. 21, Issue 2, pp. 1675-1686 (2013)
http://dx.doi.org/10.1364/OE.21.001675


View Full Text Article

Enhanced HTML    Acrobat PDF (2324 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A maximal enhancement of ~6.5 times of the external quantum efficiency (EQE) for SiNx-based light-emitting devices (LEDs) is achieved by magnetron sputtering a silver nanostructures layer onto the active matrix. The enhancement of EQE is affected by the dimension and morphology of silver nanostructures, which can be controlled by the sputtering time and the post treatment of rapid thermal annealing. The optimal size of silver nanostructures is about 100 nm in diameter by comparing the integrated electroluminescence intensity under the same input power. The optimization of EQE for SiNx-based LEDs is discussed by considering the contributions of the enhancement of light-extraction efficiency induced by the surface roughening of the front electrode, internal quantum efficiency due to the coupling between excitons and localized surface plasmons, and carrier injection efficiency. Our work may provide an alternative approach for the fabrication of Si-based light sources with promising luminescence efficiency.

© 2013 OSA

OCIS Codes
(160.3130) Materials : Integrated optics materials
(230.2090) Optical devices : Electro-optical devices
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Optical Devices

History
Original Manuscript: July 17, 2012
Revised Manuscript: January 3, 2013
Manuscript Accepted: January 9, 2013
Published: January 16, 2013

Citation
Feng Wang, Dongsheng Li, Lu Jin, Changrui Ren, Deren Yang, and Duanlin Que, "Optimization of the electroluminescence from SiNx-based light-emitting devices by modulating the size and morphology of silver nanostructures," Opt. Express 21, 1675-1686 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-2-1675


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. J. Stein, “Thermally annealed silicon nitride films: Electrical characteristics and radiation effects,” J. Appl. Phys.57(6), 2040–2047 (1985). [CrossRef]
  2. G. Aberle, “Surface passivation of crystalline silicon solar cells: a review,” Prog. Photovolt. Res. Appl.8(5), 473–487 (2000). [CrossRef]
  3. P. Doshi, G. E. Jellison, and A. Rohatgi, “Characterization and optimization of absorbing plasma-enhanced chemical vapor deposited antireflection coatings for silicon photovoltaics,” Appl. Opt.36(30), 7826–7837 (1997). [CrossRef] [PubMed]
  4. L. Zhuang, D. Marpaung, M. Burla, W. Beeker, A. Leinse, and C. Roeloffzen, “Low-loss, high-index-contrast Si₃N₄/SiO₂ optical waveguides for optical delay lines in microwave photonics signal processing,” Opt. Express19(23), 23162–23170 (2011). [CrossRef] [PubMed]
  5. M. Wang, J. Huang, Z. Yuan, A. Anopchenko, D. Li, D. Yang, and L. Pavesi, “Light emission properties and mechanism of low-temperature prepared amorphous SiNX film. II. Defect states electroluminescence,” J. Appl. Phys.104(8), 083505 (2008). [CrossRef]
  6. Z. H. Cen, T. P. Chen, Z. Liu, Y. Liu, L. Ding, M. Yang, J. I. Wong, S. F. Yu, and W. P. Goh, “Electrically tunable white-color electroluminescence from Si-implanted silicon nitride thin film,” Opt. Express18(19), 20439–20444 (2010). [CrossRef] [PubMed]
  7. B.-H. Kim, C.-H. Cho, J.-S. Mun, M.-K. Kwon, T.-Y. Park, J.-S. Kim, C.-C. Byeon, J. Lee, and S.-J. Park, “Enhancement of the external quantum efficiency of a silicon quantum dot light-emitting diode by localized surface plasmons,” Adv. Mater. (Deerfield Beach Fla.)20(16), 3100–3104 (2008). [CrossRef]
  8. N.-M. Park, C.-J. Choi, T.-Y. Seong, and S.-J. Park, “Quantum confinement in amorphous silicon quantum dots embedded in silicon nitride,” Phys. Rev. Lett.86(7), 1355–1357 (2001). [CrossRef] [PubMed]
  9. M. Wang, M. Xie, L. Ferraioli, Z. Yuan, D. Li, D. Yang, and L. Pavesi, “Light emission properties and mechanism of low-temperature prepared amorphous SiNX films. I. Room temperature band tail states photoluminescence,” J. Appl. Phys.104(8), 083504 (2008). [CrossRef]
  10. G.-R. Lin, C.-J. Lin, and C.-K. Lin, “Enhanced Fowler-Nordheim tunneling effect in nanocrystallite Si based LED with interfacial Si nano-pyramids,” Opt. Express15(5), 2555–2563 (2007). [CrossRef] [PubMed]
  11. T. Creazzo, B. Redding, E. Marchena, J. Murakowski, and D. W. Prather, “Pulsed pumping of silicon nanocrystal light emitting devices,” Opt. Express18(11), 10924–10930 (2010). [CrossRef] [PubMed]
  12. C.-H. Cheng, C.-L. Wu, C.-C. Chen, L.-H. Tsai, Y.-H. Lin, and G.-R. Lin, “Si-rich SixC1-x light-emitting diodes with buried Si quantum dots,” IEEE Photon. J4(5), 1762–1775 (2012). [CrossRef]
  13. J. Liu, X. Sun, L. C. Kimerling, and J. Michel, “Direct-gap optical gain of Ge on Si at room temperature,” Opt. Lett.34(11), 1738–1740 (2009). [CrossRef] [PubMed]
  14. B. Dutt, D. S. Sukhdeo, D. Nam, B. M. Vulovic, Ze Yuan, and K. C. Saraswat, “Roadmap to an efficient germanium-on-silicon laser: strain vs. n-type doping,” IEEE Photon. J4(5), 2002–2009 (2012). [CrossRef]
  15. R. J. Walters, G. I. Bourianoff, and H. A. Atwater, “Field-effect electroluminescence in silicon nanocrystals,” Nat. Mater.4(2), 143–146 (2005). [CrossRef] [PubMed]
  16. G. R. Lin, Y. H. Pai, C. T. Lin, and C. C. Chen, “Comparison on the electroluminescence of Si-rich SiNx and SiOx based light-emitting diodes,” Appl. Phys. Lett.96(26), 263514 (2010). [CrossRef]
  17. C. Huh, K.-H. Kim, B. K. Kim, W. Kim, H. Ko, C.-J. Choi, and G. Y. Sung, “Enhancement in light emission efficiency of a silicon nanocrystal light-emitting diode by multiple-luminescent structures,” Adv. Mater. (Deerfield Beach Fla.)22(44), 5058–5062 (2010). [CrossRef] [PubMed]
  18. B.-H. Kim, C.-H. Cho, S.-J. Park, N.-M. Park, and G. Y. Sung, “Ni/Au contact to silicon quantum dot light-emitting diodes for the enhancement of carrier injection and light extraction efficiency,” Appl. Phys. Lett.89(6), 063509 (2006). [CrossRef]
  19. K.-H. Kim, J.-H. Shin, N.-M. Park, C. Huh, T.-Y. Kim, K.-S. Cho, J. C. Hong, and G. Y. Sung, “Enhancement of light extraction from a silicon quantum dot light-emitting diode containing a rugged surface pattern,” Appl. Phys. Lett.89(19), 191120 (2006). [CrossRef]
  20. D. Li, J. Huang, and D. Yang, “Enhanced electroluminescence of silicon-rich silicon nitride light-emitting devices by NH3 plasma and annealing treatment,” Physica E41(6), 920–922 (2009). [CrossRef]
  21. J. S. Biteen, D. Pacifici, N. S. Lewis, and H. A. Atwater, “Enhanced radiative emission rate and quantum efficiency in coupled silicon nanocrystal-nanostructured gold emitters,” Nano Lett.5(9), 1768–1773 (2005). [CrossRef] [PubMed]
  22. R. T. Tung, “Electron transport at metal-semiconductor interfaces: General theory,” Phys. Rev. B Condens. Matter45(23), 13509–13523 (1992). [CrossRef] [PubMed]
  23. K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater.3(9), 601–605 (2004). [CrossRef] [PubMed]
  24. H. Zhao, J. Zhang, G. Liu, and N. Tansu, “Surface plasmon dispersion engineering via double-metallic Au/Ag layers for III-nitride based light-emitting diodes,” Appl. Phys. Lett.98(15), 151115 (2011). [CrossRef]
  25. C.-H. Lu, C.-C. Lan, Y.-L. Lai, Y.-L. Li, and C.-P. Liu, “Enhancement of green emission from InGaN/GaN multiple quantum wells via coupling to surface plasmons in a two-dimensional silver array,” Adv. Funct. Mater.21(24), 4719–4723 (2011). [CrossRef]
  26. S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys.101(9), 093105 (2007). [CrossRef]
  27. J. S. Biteen, N. S. Lewis, H. A. Atwater, H. Mertens, and A. Polman, “Spectral tuning of plasmon-enhanced silicon quantum dot luminescence,” Appl. Phys. Lett.88(13), 131109 (2006). [CrossRef]
  28. F. Wang, D. Li, D. Yang, and D. Que, “Enhancement of light-extraction efficiency of SiNx light emitting devices through a rough Ag island film,” Appl. Phys. Lett.100(3), 031113 (2012). [CrossRef]
  29. D. Li, F. Wang, C. Ren, and D. Yang, “Improved electroluminescence from silicon nitride light emitting devices by localized surface plasmons,” Opt. Mater. Express2(6), 872–877 (2012). [CrossRef]
  30. F. Wang, D. Li, D. Yang, and D. Que, “Enhancement of orange-yellow electroluminescence extraction from SiNx light-emitting devices by silver nanostructures,” Opt. Express. in progress.
  31. F. Wang, M. Wang, D. Li, and D. Yang, “Localized surface plasmon resonance enhanced photoluminescence from SiNx with different N/Si ratios,” Opt. Mater. Express2(10), 1437–1448 (2012). [CrossRef]
  32. F. Wang, D. Li, D. Yang, and D. Que, “The coupling between localized surface plasmons and excitons via Purcell effect,” Nanoscale Res. Lett.7(1), 669 (2012). [CrossRef] [PubMed]
  33. T. F. Kuech and L. J. Mawst, “Nanofabrication of III–V semiconductors employing diblock copolymer lithography,” J. Phys. D Appl. Phys.43(18), 183001 (2010). [CrossRef]
  34. G. Liu, H. Zhao, J. Zhang, J. H. Park, L. J. Mawst, and N. Tansu, “Selective area epitaxy of ultra-high density InGaN quantum dots by diblock copolymer lithography,” Nanoscale Res. Lett.6(1), 342 (2011). [CrossRef] [PubMed]
  35. Y.-K. Ee, R. A. Arif, N. Tansu, P. Kumnorkaew, and J. F. Gilchrist, “Enhancement of light extraction efficiency of InGaN quantum wells light emitting diodes using SiO2/polystyrene microlens arrays,” Appl. Phys. Lett.91(22), 221107 (2007). [CrossRef]
  36. Y. K. Ee, P. Kumnorkaew, R. A. Arif, H. Tong, J. F. Gilchrist, and N. Tansu, “Light extraction efficiency enhancement of InGaN quantum wells light-emitting diodes with polydimethylsiloxane concave microstructures,” Opt. Express17(16), 13747–13757 (2009). [CrossRef] [PubMed]
  37. X.-H. Li, R. Song, Y.-K. Ee, P. Kumnorkaew, J. F. Gilchrist, and N. Tansu, “Light extraction efficiency and radiation patterns of III-nitride light-emitting diodes with colloidal microlens arrays with various aspect ratios,” IEEE Photon. J.3(3), 489–499 (2011). [CrossRef]
  38. J. Robertson and M. J. Powell, “Gap states in silicon-nitride,” Appl. Phys. Lett.44(4), 415–417 (1984). [CrossRef]
  39. D. Li, F. Wang, D. Yang, and D. Que, “Electrically tunable electroluminescence from SiNx-based light-emitting devices,” Opt. Express20(16), 17359–17366 (2012). [CrossRef] [PubMed]
  40. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature424(6950), 824–830 (2003). [CrossRef] [PubMed]
  41. Y. Liu, J. Xu, H. Sun, S. Sun, W. Xu, L. Xu, and K. Chen, “Depth-dependent anti-reflection and enhancement of luminescence from Si quantum dots-based multilayer on nano-patterned Si substrates,” Opt. Express19(4), 3347–3352 (2011). [CrossRef] [PubMed]
  42. A. I. Zhmakin, “Enhancement of light extraction from light emitting diodes,” Phys. Rep.498(4–5), 189–241 (2011). [CrossRef]
  43. A. Marconi, A. Anopchenko, G. Pucker, and L. Pavesi, “Power efficiency estimation of silicon nanocrystals based light emitting devices in alternating current regime,” Appl. Phys. Lett.98(20), 201103 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited