OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 2 — Jan. 28, 2013
  • pp: 1713–1725

Optical absorption enhancement of hybrid-plasmonic-based metal-semiconductor-metal photodetector incorporating metal nanogratings and embedded metal nanoparticles

Chee Leong Tan, Ayman Karar, Kamal Alameh, and Yong Tak Lee  »View Author Affiliations


Optics Express, Vol. 21, Issue 2, pp. 1713-1725 (2013)
http://dx.doi.org/10.1364/OE.21.001713


View Full Text Article

Enhanced HTML    Acrobat PDF (1796 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose and numerically demonstrate a high absorption hybrid-plasmonic-based metal semiconductor metal photodetector (MSM-PD) comprising metal nanogratings, a subwavelength slit and amorphous silicon or germanium embedded metal nanoparticles (NPs). Simulation results show that by optimizing the metal nanograting parameters, the subwavelength slit and the embedded metal NPs, a 1.3 order of magnitude increase in electric field is attained, leading to 28-fold absorption enhancement, in comparison with conventional MSM-PD structures. This is 3.5 times better than the absorption of surface plasmon polariton (SPP) based MSM-PD structures employing metal nanogratings and a subwavelength slit. This absorption enhancement is due to the ability of the embedded metal NPs to enhance their optical absorption and scattering properties through light-stimulated resonance aided by the conduction electrons of the NPs.

© 2013 OSA

OCIS Codes
(040.5160) Detectors : Photodetectors
(350.4238) Other areas of optics : Nanophotonics and photonic crystals
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Detectors

History
Original Manuscript: October 10, 2012
Revised Manuscript: December 22, 2012
Manuscript Accepted: December 23, 2012
Published: January 16, 2013

Citation
Chee Leong Tan, Ayman Karar, Kamal Alameh, and Yong Tak Lee, "Optical absorption enhancement of hybrid-plasmonic-based metal-semiconductor-metal photodetector incorporating metal nanogratings and embedded metal nanoparticles," Opt. Express 21, 1713-1725 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-2-1713


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. B. D. Soole and H. Schumacher, “InGaAs metal-semiconductor-metal photodetectors for long wavelength optical communications,” IEEE J. Quantum Electron.27(3), 737–752 (1991). [CrossRef]
  2. M. Y. Liu and S. Y. Chou, “Internal emission metal-semiconductor-metal photodetectors on Si and GaAs for 1.3 μm detection,” Appl. Phys. Lett.66(20), 2673–2676 (1995). [CrossRef]
  3. S. Averine, Y. C. Chan, and Y. L. Lam, “Geometry optimization of interdigitated Schottky-barrier metal–semiconductor–metal photodiode structures,” Solid-State Electron.45(3), 441–446 (2001). [CrossRef]
  4. S. Y. Chou, Y. Liu, and P. B. Fischer, “Fabrication of sub-50 nm finger spacing and width high-speed metal-semiconductor-metal photodetectors using high-resolution electron beam lithography and molecular beam epitaxy,” J. Vac. Sci. Technol.9(6), 2920–2924 (1991). [CrossRef]
  5. F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys.82(1), 729–787 (2010). [CrossRef]
  6. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission throught sub-wavelength hole arrays,” Nature391(6668), 667–669 (1998). [CrossRef]
  7. L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, “Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations,” Phys. Rev. Lett.90(16), 167401 (2003). [CrossRef] [PubMed]
  8. T. Søndergaard, S. I. Bozhevolnyi, S. M. Novikov, J. Beermann, E. Devaux, and T. W. Ebbesen, “Extraordinary optical transmission enhanced by nanofocusing,” Nano Lett.10(8), 3123–3128 (2010). [CrossRef] [PubMed]
  9. J. A. Shackleford, R. Grote, M. Currie, J. E. Spanier, and B. Nabet, “Integrated plasmonic lens photodetector,” Appl. Phys. Lett.94(8), 083501 (2009). [CrossRef]
  10. C. L. Tan, V. V. Lysak, K. Alameh, and Y. T. Lee, “Absorption enhancement of 980 nm MSM photodetector with a plasmonic grating structure,” Opt. Commun.283(9), 1763–1767 (2010). [CrossRef]
  11. R. D. R. Bhat, N. C. Panoiu, S. R. J. Brueck, and R. M. Osgood, “Enhancing the signal-to-noise ratio of an infrared photodetector with a circular metal grating,” Opt. Express16(7), 4588–4596 (2008). [CrossRef] [PubMed]
  12. R. R. Grote, R. M. Osgood, Jr., J. E. Spanier, and B. Nabet, “Optimization of a surface plasmon enhanced metal-semiconductor-metal photodetector on gallium arsenide,” in Frontiers in Optics, OSA Technical Digest (CD) (Optical Society of America, 2010), paper FThY3.
  13. A. Karar, N. Das, C. L. Tan, K. Alameh, Y. T. Lee, and F. Karouta, “High-responsivity plasmonics-based GaAs metal-semiconductor-metal photodetectors,” Appl. Phys. Lett.99(13), 133112 (2011). [CrossRef]
  14. F. F. Ren, K. W. Ang, J. Ye, M. Yu, G. Q. Lo, and D. L. Kwong, “Split bull’s eye shaped aluminum antenna for plasmon-enhanced nanometer scale germanium photodetector,” Nano Lett.11(3), 1289–1293 (2011). [CrossRef] [PubMed]
  15. C. L. Tan, V. V. Lysak, A. Karar, N. Das, K. Alameh, and Y. T. Lee, “Absorption enhancement of MSM photodetector structure with a plasmonic double grating structure,” in 2010 10th IEEE Conference on Nanotechnology (IEEE-NANO) (IEEE, 2010), pp. 849–853.
  16. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, 1988).
  17. D. M. Schaadt, B. Feng, and E. T. Yu, “Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles,” Appl. Phys. Lett.86(6), 063106 (2005). [CrossRef]
  18. C. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).
  19. U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer, Berlin, 1995).
  20. L. Colace, G. Masini, F. Galluzzi, G. Assanto, G. Capellini, L. Di Gaspare, E. Palange, and F. Evangelisti, “Metal-semiconductor-metal near-infrared light detector based on epitaxial Ge/Si,” Appl. Phys. Lett.72(24), 3175–3177 (1998). [CrossRef]
  21. E. D. Palik, Handbook of Optical Constants of Solids (Academic, San Diego, USA, 1985).
  22. RSoft Desgin Group, DiffractMod (version.3.2), http://www.rsoftdesign.com
  23. M. Bass, C. DeCusatis, J. Enoch, V. Lakshminarayanan, G. Li, C. MacDonald, V. Mahajan, and E. Van Stryland, eds., Handbook of Optics, 3rd ed., Vol. 4. (McGraw-Hill, 2009).
  24. J. S. White, G. Veronis, Z. Yu, E. S. Barnard, A. Chandran, S. Fan, and M. L. Brongersma, “Extraordinary optical absorption through subwavelength slits,” Opt. Lett.34(5), 686–688 (2009). [CrossRef] [PubMed]
  25. Z. Yu, G. Veronis, S. Fan, and M. L. Brongersma, “Design of midinfrared photodetectors enhanced by surface plasmons on grating structures,” Appl. Phys. Lett.89(15), 151116 (2006). [CrossRef]
  26. H. J. Lezec and T. Thio, “Diffracted evanescent wave model for enhanced and suppressed optical transmission through subwavelength hole arrays,” Opt. Express12(16), 3629–3651 (2004). [CrossRef] [PubMed]
  27. C. C. Chao, C. M. Wang, Y. C. Chang, and J. Y. Chang, “Plasmonic multilayer structure for ultrathin amorphous silicon film photovoltaic cell,” Opt. Rev.16(3), 343–346 (2009). [CrossRef]
  28. T. L. Temple, G. D. K. Mahanama, H. S. Reehal, and D. M. Bagnall, “Influence of localized surface plasmon excitation in silver nanoparticles on the performance of silicon solar cells,” Sol. Energy Mater. Sol. Cells93(11), 1978–1985 (2009). [CrossRef]
  29. S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys.101(9), 093105 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited