OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 2 — Jan. 28, 2013
  • pp: 1762–1772

Optical horn antennas for efficiently transferring photons from a quantum emitter to a single-mode optical fiber

T. Grosjean, M. Mivelle, G.W. Burr, and F.I. Baida  »View Author Affiliations

Optics Express, Vol. 21, Issue 2, pp. 1762-1772 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (803 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We theoretically demonstrate highly efficient optical coupling between a single quantum emitter and a monomode optical fiber over remarkably broad spectral ranges by extending the concept of horn antenna to optics. The optical horn antenna directs the radiation from the emitter toward the optical fiber and efficiently phase-matches the photon emission with the fiber mode. Numerical results show that an optical horn antenna can funnel up to 85% of the radiation from a dipolar source within an emission cone semi-angle as small as 7 degrees (antenna directivity of 300). It is also shown that 50% of the emitted power from the dipolar source can be collected and coupled to an SMF-28 fiber mode over spectral ranges larger than 1000 nm, with a maximum energy transfer reaching 70 %. This approach may open new perspectives in quantum optics and sensing.

© 2013 OSA

OCIS Codes
(060.2430) Fiber optics and optical communications : Fibers, single-mode
(230.3990) Optical devices : Micro-optical devices
(350.4238) Other areas of optics : Nanophotonics and photonic crystals
(180.4243) Microscopy : Near-field microscopy

ToC Category:
Optical Devices

Original Manuscript: November 1, 2012
Revised Manuscript: January 7, 2013
Manuscript Accepted: January 9, 2013
Published: January 16, 2013

T. Grosjean, M. Mivelle, G.W. Burr, and F.I. Baida, "Optical horn antennas for efficiently transferring photons from a quantum emitter to a single-mode optical fiber," Opt. Express 21, 1762-1772 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. Miyazawa, K. Takemoto, Y. Sakuma, S. Hirose, T. Usuki, N. Yokoyama, M. Takatsu, and Y. Arakawa, “Single-photon generation in the 1.55-mum optical-fiber band from an inas/inp quantum dot,” Jpn. J. Appl. Phys.44, L620–L622 (2005). [CrossRef]
  2. E. Moreau, I. Robert, JM Gérard, I. Abram, L. Manin, and V. Thierry-Mieg, “Single-mode solid-state single photon source based on isolated quantum dots in pillar microcavities,” Appl. Phys. Lett.79, 2865–2867 (2001). [CrossRef]
  3. M. Pelton, C. Santori, J. Vuc̆ković, B. Zhang, G.S. Solomon, J. Plant, and Y. Yamamoto, “Efficient source of single photons : a single quantum dot in a micropost microcavity,” Phys. Rev. Lett.89, 233602 (2002). [CrossRef] [PubMed]
  4. J. Claudon, J. Bleuse, N.S. Malik, M. Bazin, P. Jaffrennou, N. Gregersen, C. Sauvan, P. Lalanne, and J.M. Gérard, “A highly efficient single-photon source based on a quantum dot in a photonic nanowire,” Nat. Photon.4, 174–177 (2010). [CrossRef]
  5. D. Gérard, A. Devilez, H. Aouani, B. Stout, N. Bonod, J. Wenger, E. Popov, and H. Rigneault, “Efficient excitation and collection of single-molecule fluorescence close to a dielectric microsphere,” J. Opt. Soc. Am. B26, 1473–1478 (2009). [CrossRef]
  6. A. Devilez, B. Stout, and N. Bonod, “Compact metallo-dielectric optical antenna for ultra directional and enhanced radiative emission,” Nano Lett.4, 3390–3396 (2010).
  7. A.G. Curto, G. Volpe, T.H. Taminiau, M.P. Kreuzer, R. Quidant, and N.F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science329, 930–933 (2010). [CrossRef] [PubMed]
  8. KG Lee, XW Chen, H. Eghlidi, P. Kukura, R. Lettow, A. Renn, V. Sandoghdar, and S. Götzinger, “A planar dielectric antenna for directional single-photon emission and near-unity collection efficiency,” Nat. Photon.5, 166–169 (2011). [CrossRef]
  9. X.W. Chen, S. Götzinger, and V. Sandoghdar, “99% efficiency in collecting photons from a single emitter,” Opt. lett.36, 3545–3547 (2011). [CrossRef] [PubMed]
  10. D.E. Chang, A.S. Sørensen, P.R. Hemmer, and M.D. Lukin, “Quantum optics with surface plasmons,” Phys. Rev. Lett.97, 053002 (2006). [CrossRef] [PubMed]
  11. M. Davanço and K. Srinivasan, “Fiber-coupled semiconductor waveguides as an efficient optical interface to a single quantum dipole,” Opt. lett.34, 2542–2544 (2009). [CrossRef] [PubMed]
  12. C.A. Balanis, Antenna Theory : Analysis and Design (John Wiley & Sons, New-York, 1997).
  13. P. Wade, “Rectangular waveguide to coax transition design,” http://f1chf.free.fr/PDF/convertisseursWR90etWR75.pdf .
  14. W. Lukosz and R. Kunz, “Light emission by magnetic and electric dipoles close to a plane dielectric interface. ii. radiation patterns of perpendicular oriented dipoles,” J. Opt. Soc. Am.67, 1615–1619 (1977). [CrossRef]
  15. A. Taflove and S.C. Hagness, Computational Electrodynamics : The Finite-Difference Time-Domain Method, Third Edition (Artech House, Boston, 2005).
  16. L. Novotny and B. Hecht, Principle of nano-optics (Cambridge University Press, 2006). [CrossRef]
  17. E.D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1998).
  18. CSF Thomson, L’optique Guidée Monomode et ses Applications, 15 (Masson, 1983).
  19. C. Vion, P. Spinicelli, L. Coolen, C. Schwob, J.M. Frigerio, J.P. Hermier, and A. Maître, “Controlled modification of single colloidal cdse/zns nanocrystal fluorescence through interactions with a gold surface,” Opt. express18, 7440–7455 (2010). [CrossRef] [PubMed]
  20. J. Li, A. Salandrino, and N. Engheta, “Shaping light beams in the nanometer scale : A yagi-uda nanoantenna in the optical domain,” Phys. Rev. B76, 245403 (2007). [CrossRef]
  21. H.F. Hofmann, T. Kosako, and Y. Kadoya, “Design parameters for a nano-optical yagi–uda antenna,” New J. Phys.9, 217 (2007). [CrossRef]
  22. T.H. Taminiau, F.D. Stefani, and N.F. van Hulst, “Enhanced directional excitation and emission of single emitters by a nano-optical yagi-uda antenna,” Opt. Express16, 10858–10866 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited