OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 2 — Jan. 28, 2013
  • pp: 1830–1839

Sub-cycle QAM modulation for VCSEL-based optical fiber links

Tien-Thang Pham, Roberto Rodes, Jesper Bevensee Jensen, Connie J. Chang-Hasnain, and Idelfonso Tafur Monroy  »View Author Affiliations


Optics Express, Vol. 21, Issue 2, pp. 1830-1839 (2013)
http://dx.doi.org/10.1364/OE.21.001830


View Full Text Article

Enhanced HTML    Acrobat PDF (11127 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

QAM modulation utilizing subcarrier frequency lower than the symbol rate is both theoretically and experimentally investigated. High spectral efficiency and concentration of power in low frequencies make sub-cycle QAM signals attractive for optical fiber links with direct modulated light sources. Real-time generated 10-Gbps 4-level QAM signal in a 7.5-GHz bandwidth utilizing subcarrier frequency at a half symbol rate was successfully transmitted over 20-km SMF using an un-cooled 1.5-µm VCSEL. Only 2.5-dB fiber transmission power penalty was observed with no equalization applied.

© 2013 OSA

OCIS Codes
(060.2330) Fiber optics and optical communications : Fiber optics communications
(060.4080) Fiber optics and optical communications : Modulation

ToC Category:
Access Networks and LAN

History
Original Manuscript: October 2, 2012
Revised Manuscript: November 11, 2012
Manuscript Accepted: November 12, 2012
Published: January 17, 2013

Virtual Issues
European Conference on Optical Communication 2012 (2012) Optics Express

Citation
Tien-Thang Pham, Roberto Rodes, Jesper Bevensee Jensen, Connie J. Chang-Hasnain, and Idelfonso Tafur Monroy, "Sub-cycle QAM modulation for VCSEL-based optical fiber links," Opt. Express 21, 1830-1839 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-2-1830


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. W. Hofmann, M. Müller, P. Wolf, A. Mutig, T. Gründl, G. Böhm, D. Bimberg, and M.-C. Amann, “40 Gbit/s modulation of 1550 nm VCSEL,” Electron. Lett.47(4), 270–271 (2011). [CrossRef]
  2. P. Moser, W. Hofmann, P. Wolf, G. Fiol, J. A. Lott, N. N. Ledentsov, and D. Bimberg, “83 fJ/bit energy-to-data ratio of 850-nm VCSEL at 17 Gb/s,” in Proceedings of 37th European Conference on Optical Communication (2011), pp. 1–3.
  3. W. Hofmann, M. Görblich, G. Böhm, M. Ortsiefer, L. Xie, and M.-C. Amann, “Long-wavelength 2-D VCSEL arrays for optical interconnects,” in Proceedings of Lasers and Electro-Optics (CLEO) and Quantum Electronics and Laser Science Conference (2008), pp.1- 2.
  4. M. C. Y. Huang, K. B. Cheng, Y. Zhou, A. Pisano, and C. Chang-Hasnain, “Monolithic integrated piezoelectric MEMS-tunable VCSEL,” IEEE IEEE J. Sel. Topics Quantum Electron.13(2), 374–380 (2007). [CrossRef]
  5. B. Zhang, X. Zhao, L. Christen, D. Parekh, W. Hofmann, M. C. Wu, M. C. Amann, C. J. Chang-Hasnain, and A. E. Willner, “Adjustable chirp injection-locked 1.55-μm VCSELs for enhanced chromatic dispersion compensation at 10-Gbit/s,” in Optical Fiber Communication Conference (Optical Society of America, 2008) paper OWT7.
  6. L. Xu, H. K. Tsang, W. Hofmann, and M.-C. Amann, “10-Gb/s colorless re-modulation of signal from 1550nm vertical cavity surface emitting laser array in WDM PON,” in Proceedings of Lasers and Electro-Optics (CLEO) and Quantum Electronics and Laser Science Conference (2009), paper CI3_4.
  7. T. B. Gibbon, K. Prince, T. T. Pham, A. Tatarczak, C. Neumeyr, E. Rönneberg, M. Ortsiefer, and I. T. Monroy, “VCSEL transmission at 10Gb/s for 20km single mode fiber WDM-PON without dispersion compensation or injection locking,” Opt. Fiber Technol.17(1), 41–45 (2011). [CrossRef]
  8. K. Prince, M. Ma, T. B. Gibbon, C. Neumeyr, E. Rönneberg, M. Ortsiefer, and I. Tafur Monroy, “Free-running 1550 nm VCSEL for 10.7 Gb/s transmission in 99.7 km PON,” IEEE/OSA JOCN.3, 399–403 (2011).
  9. R. Rodes, J. Estaran, B. Li, M. Muller, J. B. Jensen, T. Gruendl, M. Ortsiefer, C. Neumeyr, J. Rosskopf, K. J. Larsen, M.-C. Amann, and I. T. Monroy, “100 Gb/s single VCSEL data transmission link,” in Optical Fiber Communication Conference (Optical Society of America, 2012), paper PDP5D.
  10. E. Hugues-Salas, R. P. Giddings, X. Q. Jin, J. L. Wei, X. Zheng, Y. Hong, C. Shu, and J. M. Tang, “Real-time experimental demonstration of low-cost VCSEL intensity-modulated 11.25 Gb/s optical OFDM signal transmission over 25 km PON systems,” Opt. Express19(4), 2979–2988 (2011), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-4-2979 . [CrossRef] [PubMed]
  11. S. C. J. Lee, F. Breyer, S. Randel, J. Zeng, F. Huijskens, H. P. van den Boom, A. M. Koonen, and N. Hanik, “24-Gb/s transmission over 730 m of multimode fiber by direct modulation of an 850-nm VCSEL using discrete multi-tone modulation,” in Optical Fiber Communication Conference (Optical Society of America, 2009), paper PDP5.
  12. K. Szczerba, B.-E. Olsson, P. Westbergh, A. Rhodin, J. S. Gustavsson, A. Haglund, M. Karlsson, A. Larsson, and P. A. Andrekson, "37 Gbps transmission over 200 m of MMF using single cycle subcarrier modulation and a VCSEL with 20 GHz modulation bandwidth," in Proceedings of 36th European Conference on Optical Communication (2010), paper We.7.B.2.
  13. J. Proakis and M. Salehi, Digital Communications (McGraw-Hill, 2007).
  14. J. Justesen, “Performance of product codes and related structures with iterated decoding,” IEEE Trans. Commun.59(2), 407–415 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited