OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 2 — Jan. 28, 2013
  • pp: 1849–1856

Matched filtering Generalized Phase Contrast using binary phase for dynamic spot- and line patterns in biophotonics and structured lighting

Andrew Bañas, Thomas Aabo, Darwin Palima, and Jesper Glückstad  »View Author Affiliations

Optics Express, Vol. 21, Issue 2, pp. 1849-1856 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (2519 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



This work discusses the use of matched filtering Generalized Phase Contrast (mGPC) as an efficient and cost-effective beam shaper for applications such as in biophotonics, optical micromanipulation, microscopy and two-photon polymerization. The theoretical foundation of mGPC is described as a combination of Generalized Phase Contrast and phase-only correlation. Such an analysis makes it convenient to optimize an mGPC system for different setup conditions. Results showing binary-only phase generation of dynamic spot arrays and line patterns are presented.

© 2013 OSA

OCIS Codes
(070.6110) Fourier optics and signal processing : Spatial filtering
(100.1390) Image processing : Binary phase-only filters
(140.3300) Lasers and laser optics : Laser beam shaping
(070.6120) Fourier optics and signal processing : Spatial light modulators

ToC Category:
Optical Devices

Original Manuscript: September 19, 2012
Manuscript Accepted: October 24, 2012
Published: January 17, 2013

Virtual Issues
Vol. 8, Iss. 2 Virtual Journal for Biomedical Optics

Andrew Bañas, Thomas Aabo, Darwin Palima, and Jesper Glückstad, "Matched filtering Generalized Phase Contrast using binary phase for dynamic spot- and line patterns in biophotonics and structured lighting," Opt. Express 21, 1849-1856 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Y. Hayasaki, M. Itoh, T. Yatagai, and N. Nishida, “Nonmechanical optical manipulation of microparticle using spatial light modulator,” Opt. Rev.6(1), 24–27 (1999). [CrossRef]
  2. R. L. Eriksen, P. C. Mogensen, and J. Glückstad, “Multiple-beam optical tweezers generated by the generalized phase-contrast method,” Opt. Lett.27(4), 267–269 (2002). [CrossRef] [PubMed]
  3. D. Palima, A. R. Bañas, G. Vizsnyiczai, L. Kelemen, P. Ormos, and J. Glückstad, “Wave-guided optical waveguides,” Opt. Express20(3), 2004–2014 (2012). [CrossRef] [PubMed]
  4. E. Papagiakoumou, F. Anselmi, A. Bègue, V. de Sars, J. Glückstad, E. Y. Isacoff, and V. Emiliani, “Scanless two-photon excitation of channelrhodopsin-2,” Nat. Methods7(10), 848–854 (2010). [CrossRef] [PubMed]
  5. M. Go, C. Stricker, S. Redman, H. Bachor, and V. Daria, “Simultaneous multi-site two-photon photostimulation in three dimensions,” J. Biophotonics (2012) doi:10.1002/jbio.201100101. [CrossRef]
  6. D. Palima and J. Glückstad, “Comparison of generalized phase contrast and computer generated holography for laser image projection,” Opt. Express16(8), 5338–5349 (2008). [CrossRef] [PubMed]
  7. J. Glückstad, D. Palima, J. S. Dam, and I. Perch-Nielsen, “Dynamically reconfigurable multiple beam illumination based on optical correlation,” J. Opt. A, Pure Appl. Opt.11, 034012 (2009).
  8. A. Bañas, D. Palima, and J. Glückstad, “Matched-filtering generalized phase contrast using LCoS pico-projectors for beam-forming,” Opt. Express20(9), 9705–9712 (2012). [CrossRef] [PubMed]
  9. R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of the phase from image and diffraction plane pictures,” Optik (Stuttg.)35, 237 (1972).
  10. H. Ulriksen, J. Thogersen, S. Keiding, I. R. Perch-Nielsen, J. S. Dam, D. Z. Palima, H. Stapelfeldt, and J. Glückstad, “Independent trapping, manipulation and characterization by an all-optical biophotonics workstation,” J. Eur. Opt. Soc.-Rapid3, 08034 (2008).
  11. I. Perch-Nielsen, D. Palima, J. S. Dam, and J. Glückstad, “Parallel particle identification and separation for active optical sorting,” J. Opt. A, Pure Appl. Opt.11, 034013 (2009).
  12. S. Yin, G. Lu, J. Zhang, F. T. S. Yu, and J. N. Mait, “Kinoform-based Nipkow disk for a confocal microscope,” Appl. Opt.34(25), 5695–5698 (1995). [CrossRef] [PubMed]
  13. P. J. Smith, C. M. Taylor, A. J. Shaw, and E. M. McCabe, “Programmable array microscopy with a ferroelectric liquid-crystal spatial light modulator,” Appl. Opt.39(16), 2664–2669 (2000). [CrossRef] [PubMed]
  14. J. Glückstad and D. Palima, Generalized Phase Contrast: Applications in Optics and Photonics, Vol. 146, (Springer Series in Optical Sciences, 2009), 310.
  15. S. Tauro, A. Bañas, D. Palima, and J. Glückstad, “Experimental demonstration of Generalized Phase Contrast based Gaussian beam-shaper,” Opt. Express19(8), 7106–7111 (2011). [CrossRef] [PubMed]
  16. T. Čižmár, M. Mazilu, and K. Dholakia, “In situ wavefront correction and its application to micromanipulation,” Nat. Photonics4(6), 388–394 (2010). [CrossRef]
  17. A. Bañas, D. Palima, F. Pedersen, and J. Glückstad, “Development of a compact Bio-Optofluidic Cell Sorter,” Proc. SPIE8274, 1–6 (2012).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: MOV (891 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited