OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 2 — Jan. 28, 2013
  • pp: 1857–1864

Vertical-cavity and randomly scattered lasing from different thicknesses of epitaxial ZnO films grown on Y2O3-buffered Si (111)

C. C. Kuo, W.-R. Liu, B. H. Lin, W. F. Hsieh, C.-H. Hsu, W. C. Lee, M. Hong, and J. Kwo  »View Author Affiliations

Optics Express, Vol. 21, Issue 2, pp. 1857-1864 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1974 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Two different types of lasing modes, vertical Fabry-Perot cavity and random lasing, were observed in ZnO epi-films of different thicknesses grown on Si (111) substrates. Under optical excitation at room temperature by a frequency tripled Nd:YVO4 laser with wavelength of 355 nm, the lasing thresholds are low due to high crystalline quality of the ZnO epitaxial films, which act as microresonators. For the thick ZnO layer (1,200 nm), its lasing action is originated from the random scattering due to the high density of crack networks developed in the thick ZnO film. However, the low crack density of the thin film (555 nm) fails to provide feedback loops essential for random scattering. Nevertheless, even the lower threshold lasing is achieved by the Fabry-Perot cavity formed by two interfaces of the thin ZnO film. The associated lasing modes of the thin ZnO film can be characterized as the transverse Gaussian modes attributed to the smooth curved surfaces.

© 2013 OSA

OCIS Codes
(140.3610) Lasers and laser optics : Lasers, ultraviolet
(140.5960) Lasers and laser optics : Semiconductor lasers
(160.4760) Materials : Optical properties
(160.4236) Materials : Nanomaterials

ToC Category:
Lasers and Laser Optics

Original Manuscript: August 31, 2012
Revised Manuscript: October 12, 2012
Manuscript Accepted: December 19, 2012
Published: January 17, 2013

C. C. Kuo, W.-R. Liu, B. H. Lin, W. F. Hsieh, C.-H. Hsu, W. C. Lee, M. Hong, and J. Kwo, "Vertical-cavity and randomly scattered lasing from different thicknesses of epitaxial ZnO films grown on Y2O3-buffered Si (111)," Opt. Express 21, 1857-1864 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. C. Johnson, H.-J. Choi, K. P. Knutsen, R. D. Schaller, P. Yang, and R. J. Saykally, “Single gallium nitride nanowire lasers,” Nat. Mater.1(2), 106–110 (2002). [CrossRef] [PubMed]
  2. R. M. Ma, X. L. Wei, L. Dai, S. F. Liu, T. Chen, S. Yue, Z. Li, Q. Chen, and G. G. Qin, “Light coupling and modulation in coupled nanowire ring-Fabry-Pérot cavity,” Nano Lett.9(7), 2697–2703 (2009). [CrossRef] [PubMed]
  3. P. Yang, H. Yan, S. Mao, R. Russo, J. Johnson, R. Saykally, N. Morris, J. Pham, R. He, and H. J. Choi, “Controlled growth of ZnO nanowires and their optical properties,” Adv. Funct. Mater.12(5), 323 (2002). [CrossRef]
  4. M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science292(5523), 1897–1899 (2001). [CrossRef] [PubMed]
  5. M. A. Versteegh, D. Vanmaekelbergh, and J. I. Dijkhuis, “Room-temperature laser emission of ZnO nanowires explained by many-body theory,” Phys. Rev. Lett.108(15), 157402 (2012). [CrossRef] [PubMed]
  6. H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett.82(11), 2278–2281 (1999). [CrossRef]
  7. S. F. Yu, C. Yuen, S. P. Lau, W. I. Park, and G.-C. Yi, “Random laser action in ZnO nanorod arrays embedded in ZnO epilayers,” Appl. Phys. Lett.84(17), 3241 (2004). [CrossRef]
  8. H. C. Hsu, C. Y. Wu, and W. F. Hsieh, “Stimulated emission and lasing of random-growth oriented ZnO nanowires,” J. Appl. Phys.97(6), 064315 (2005). [CrossRef]
  9. Y. T. Chen and Y. F. Chen, “Enhanced random lasing in ZnO nanocombs assisted by Fabry-Perot resonance,” Opt. Express19(9), 8728–8734 (2011). [CrossRef] [PubMed]
  10. X. Ma, P. Chen, D. Li, Y. Zhang, and D. Yang, “Electrically pumped ZnO film ultraviolet random lasers on silicon substrate,” Appl. Phys. Lett.91(25), 251109 (2007). [CrossRef]
  11. E. S. P. Leong, S. F. Yu, and S. P. Lau, “Directional edge-emitting UV random laser diodes,” Appl. Phys. Lett.89(22), 221109 (2006).
  12. S. Kalusniak, H. J. Wünsche, and F. Henneberger, “Random semiconductor lasers: scattered versus Fabry-Perot feedback,” Phys. Rev. Lett.106(1), 013901 (2011). [CrossRef] [PubMed]
  13. W.-R. Liu, Y.-H. Li, W. F. Hsieh, C.-H. Hsu, W. C. Lee, Y. J. Lee, M. Hong, and J. Kwo, “Domain matching epitaxial growth of high-quality ZnO film using a Y2O3 buffer layer on Si (111),” Cryst. Growth Des.9(1), 239 (2009). [CrossRef]
  14. Y. F. Huang, S. Chattopadhyay, Y. J. Jen, C. Y. Peng, T. A. Liu, Y. K. Hsu, C. L. Pan, H. C. Lo, C. H. Hsu, Y. H. Chang, C. S. Lee, K. H. Chen, and L. C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol.2(12), 770–774 (2007). [CrossRef] [PubMed]
  15. B. H. Lin, W. R. Liu, S. Yang, C. C. Kuo, C.-H. Hsu, W. F. Hsieh, W. C. Lee, Y. J. Lee, M. Hong, and J. Kwo, “The growth of an epitaxial ZnO film on Si(111) with a Gd2O3(Ga2O3) buffer Layer,” Cryst. Growth Des.11(7), 2846–2851 (2011). [CrossRef]
  16. J. F. Muth, R. M. Kolbas, A. K. Sharma, S. Oktyabrsky, and J. Narayan, “Excitonic structure and absorption coefficient measurements of ZnO single crystal epitaxial films deposited by pulsed laser deposition,” J. Appl. Phys.85(11), 7884 (1999). [CrossRef]
  17. E. S. P. Leong and S. F. Yu, “UV Random lasing action in p-SiC(4H)/i-ZnO–SiO2 nanocomposite/n-ZnO:Al heterojunction diodes,” Adv. Mater. (Deerfield Beach Fla.)18(13), 1685–1688 (2006). [CrossRef]
  18. J. T. Verdeyen, Laser Electronics (3rd ed. Prentice Hall, 1995).
  19. W.-R. Liu, W. F. Hsieh, C.-H. Hsu, K. S. Liang, and F. S.-S. Chien, “Threading dislocations in domain-matching epitaxial films of ZnO,” J. Appl. Cryst.40(5), 924–930 (2007).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited