OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 2 — Jan. 28, 2013
  • pp: 1898–1910

Compact on-chip plasmonic light concentration based on a hybrid photonic-plasmonic structure

Ye Luo, Maysamreza Chamanzar, and Ali Adibi  »View Author Affiliations


Optics Express, Vol. 21, Issue 2, pp. 1898-1910 (2013)
http://dx.doi.org/10.1364/OE.21.001898


View Full Text Article

Enhanced HTML    Acrobat PDF (3191 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a novel approach for achieving tightly concentrated optical field by a hybrid photonic-plasmonic device in an integrated platform, which is a triangle-shaped metal taper mounted on top of a dielectric waveguide. This device, which we call a plasmomic light concentrator (PLC), can achieve vertical coupling of light energy from the dielectric waveguide to the plasmonic region and light focusing into the apex of the metal taper(at the scale ∼ 10nm) at the same time. For a demonstration of the PLCs presented in this paper, we numerically investigate the performance of a gold taper on a Si3N4 waveguide at working wavelengths around 800nm. We show that three major effects (mode beat, nanofocusing, and weak resonance) interplay to generate this light concentration phenomenon and govern the performance of the device. Combining these effects, the PLC can be designed to be super compact while maintaining high efficiency over a wide band. In particular, we demonstrate that under optimized size parameters and wavelength a field concentration factor (FCF), which is the ratio of the norm of the electric field at the apex over the average norm of the electric field in the inputting waveguide, of about 13 can be achieved with the length of the device less than 1μm for a moderate tip radius 20nm. Moreover, we show that a FCF of 5 – 10 is achievable over a wavelength range of 700 – 1100nm with the length of the device further reduced (to about 400nm).

© 2013 OSA

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Optics at Surfaces

History
Original Manuscript: November 5, 2012
Revised Manuscript: December 30, 2012
Manuscript Accepted: January 9, 2013
Published: January 17, 2013

Citation
Ye Luo, Maysamreza Chamanzar, and Ali Adibi, "Compact on-chip plasmonic light concentration based on a hybrid photonic-plasmonic structure," Opt. Express 21, 1898-1910 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-2-1898


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. A. Schuller, E. S. Barnard, W. Cai, Y. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Materials9, 193–204 (2010). [CrossRef]
  2. Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, “Focusing surface plasmons with a plasmonic lens,” Nano Lett.5, 1726–1729 (2005). [CrossRef] [PubMed]
  3. W. Chen, D. C. Abeysinghe, R. L. Nelson, and Q. Zhan, “Plasmonic lens made of multiple concentric metallic rings under radially polarized illumination,” Nano Lett.9, 4320–4325 (2009). [CrossRef] [PubMed]
  4. L Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, “Sub-wavelength focusing and guiding of surface plasmons,” Nano Lett.5, 1399–1402 (2005). [CrossRef] [PubMed]
  5. A. Yanai and U. Levy, “Plasmonic focusing with a coaxial structure illuminated by radially polarized light,” Opt. Express17, 13150–13157 (2009). [CrossRef]
  6. L. Novotny, R. X. Bian, and X.S. Xie, “Theory of nanometric optical tweezers,” Phys. Rev. Lett.79, 645–648 (1997). [CrossRef]
  7. K. V. Nerkararyan, “Superfocusing on a surface polariton in a wedge-like structure,” Phys. Lett. A237, 103–105 (1997). [CrossRef]
  8. A. J. Babadjanyan, N. L. Margaryan, and K. V. Nerkararyan, “Superfocusing of surface polaritons in the conical structure,” J. Appl. Phys.87, 3785–3788 (2000). [CrossRef]
  9. M. I. Stockman, “Nanofocusing of optical energy in tapered plasmonic waveguides,” Phys. Rev. Lett.93, 137404 (2004). [CrossRef] [PubMed]
  10. N. A. Issa and R. Guckenberger, “Optical nanofocusing on tapered metallic waveguides,” Plasmonics2, 31–37 (2007). [CrossRef]
  11. K. C. Vernon, D. K. Gramotnev, and D. F. P. Pile, “Adiabatic nanofocusing of plasmons by a sharp metal wedge on a dielectric substrate,” J. Appl. Phys.101, 104312 (2007). [CrossRef]
  12. E. Moreno, S. G. Rodrigo, S. I. Bozhevolnyi, L. Martín-Moreno, and F. J. García-Vidal, “Guiding and focusing of electromagnetic fields with wedge plasmon polaritons,” Phys. Rev. Lett.100, 023901 (2008). [CrossRef] [PubMed]
  13. S. I. Bozhevolnyi and K. V. Nerkararyan, “Adiabatic nanofocusing of channel plasmon polaritons,” Opt. Lett.35, 541–543 (2009). [CrossRef]
  14. V. S. Volkov, S. I. Bozhevolnyi, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, and T. W. Ebbesen, “Nanofocusing with channel plasmon polaritons,” Nano Lett.9, 1278–1282 (2009). [CrossRef] [PubMed]
  15. V. S. Volkov, J. Gosciniak, S. I. Bozhevolnyi, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, and T. W. Ebbesen, “Plasmonic candle: towards efficient nanofocusing with channel plasmon polaritons,” New J. Phys.11, 113043 (2009). [CrossRef]
  16. Z. Fang, H. Qi, C. Wang, and X. Zhu, “Hybrid plasmonic waveguide based on tapered dielectric nanoribbon: excitation and focusing,” Plasmonics5, 201–212 (2010). [CrossRef]
  17. K. Tanaka, K. Katayama, and M. Tanaka, “Nanofocusing of surface plasmon polaritons by a pyramidal structure on an aperture,” Opt. Express18, 787–798 (2010). [CrossRef] [PubMed]
  18. N. C. Lindquist, P. Nagpal, A. Lesuffleur, D. J. Norris, and S. Oh, “Three-dimensional plasmonic nanofocusing,” Nano Lett.10, 1369–1373 (2010). [CrossRef] [PubMed]
  19. C. Ropers, C. C. Neacsu, T. Elsaesser, M. Albrecht, M. B. Raschke, and C. Lienau, “Grating-coupling of surface plasmons onto metallic tips: A nanoconfined light source,” Nano Lett.7, 2784–2788 (2007). [CrossRef] [PubMed]
  20. E. Verhagen, A. Polman, and L. Kuipers, “Nanofocusing in laterally tapered plasmonic waveguides,” Opt. Express16, 766–788 (2008). [CrossRef]
  21. A. Normatov, P. Ginzburg1, N. Berkovitch, G. M. Lerman, A. Yanai, U. Levy, and M. Orenstein, “Efficient coupling and field enhancement for the nano-scale: plasmonic needle,” Opt. Express18, 14079–14086 (2009). [CrossRef]
  22. H. Choi, D. F. P. Pile, S. Nam, G. Bartal, and X. Zhang, “Compressing surface plasmons for nano-scale optical focusing,” Opt. Express17, 7519–7524 (2009). [CrossRef] [PubMed]
  23. M. Schnell, P. Alonso-González, L. Arzubiaga, F. Casanova, L. E. Hueso, A. Chuvilin, and R. Hillenbrand, “Nanofocusing of mid-infrared energy with tapered transmission lines,” Nat. Photonics5, 283–287 (2011). [CrossRef]
  24. M. Malerba, A. Alabastri, G. Cojoc, M. Francardi, M. P. Donnorso, R. P. Zaccaria, F. De Angelis, and E. Di Fabrizio, “Optimization of surface plasmon polariton generation in a nanocone through linearly polarized laser beams,” Microelectron. Eng.97, 204 (2012). [CrossRef]
  25. R. Yang, R. A. Wahsheh, Z. Lu, and M. A. G. Abushagur, “Efficiently squeezing near infrared light into a 21nm-by-24nm nanospot,” Opt. Express16, 20142–20148 (2008). [CrossRef] [PubMed]
  26. B. Desiatov, I. Goykhman, and U. Levy, “On-chip focusing of light by metallic nanotip,” Frontiers in Optics, OSA Technical Digest (CD) (OSA, 2010), paper FThB7.
  27. B. Desiatov, I. Goykhman, and U. Levy, “Nanoscale mode selector in silicon waveguide for on-chip nanofocusing applications,” Nano Lett.9, 3381–3386 (2009). [CrossRef] [PubMed]
  28. B. Desiatov, I. Goykhman, and U. Levy, “Plasmonic nanofocusing of light in an integrated silicon photonics platform,” Opt. Express19, 13150–13157 (2011). [CrossRef] [PubMed]
  29. Y. Luo, M. Chamanzar, A. A. Eftekhar, and A. Adibi, “On-chip nanofocusing using a hybrid plasmonic-dieletric tapered waveguide,” Integrated Photonics Research, Silicon and Nanophotonics, OSA Technical Digest (CD) (OSA, 2011), paper ITuD7.
  30. X. He, L Yang, and T. Yang, “Optical nanofocusing by tapering coupled photonic-plasmonic waveguides,” Opt. Express19, 12865–12872 (2011). [CrossRef] [PubMed]
  31. P. Berini, “Plasmon-polariton waves guided by thin lossy metal films of finite width Bound modes of asymmetric structures,” Phys. Rev. B63, 125417 (2001). [CrossRef]
  32. R. F. Oulton, G. Bartal, D. F. P. Pile, and X. Zhang, “Confinement and propagation characteristics of subwavelength plasmonic modes,” New J. Phys.10, 105018 (2008). [CrossRef]
  33. D. Dai and S. He, “A silicon-based hybrid plasmonic waveguide with a metal cap for a nano-scale light confinement,” Opt. Express17, 16646–16653 (2009). [CrossRef] [PubMed]
  34. I. Goykhman, B. Desiatov, and U. Levy, “Experimental demonstration of locally oxidized hybrid silicon-plasmonic waveguide,” Appl. Phys. Lett.97, 141106 (2010). [CrossRef]
  35. M. Chamanzar, M. Soltani, B. Momeni, S. Yegnanarayanan, and A. Adibi, “Hybrid photonic surface-plasmon-polariton ring resonators for sensing applications,” Appl. Phys. B101, 263–271 (2010). [CrossRef]
  36. M. Chamanzar and A. Adibi, “Hybrid nanoplasmonic-photonic resonators for efficient coupling of light to single plasmonic nanoresonators,” Opt. Express19, invited for Focus Issue: Collective Phenomena, 22292–22304 (2011). [CrossRef] [PubMed]
  37. A. D. Rakic, A. B. Djurisic, J. M. Elazar, and M. L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Appl. Opt.37, 5271–5283 (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited