OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 2 — Jan. 28, 2013
  • pp: 1986–1996

Pulsed laser manipulation of an optically trapped bead: Averaging thermal noise and measuring the pulsed force amplitude

Thue B. Lindballe, Martin V. G. Kristensen, Kirstine Berg-Sørensen, Søren R. Keiding, and Henrik Stapelfeldt  »View Author Affiliations

Optics Express, Vol. 21, Issue 2, pp. 1986-1996 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1137 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



An experimental strategy for post-eliminating thermal noise on position measurements of optically trapped particles is presented. Using a nanosecond pulsed laser, synchronized to the detection system, to exert a periodic driving force on an optically trapped 10 μm polystyrene bead, the laser pulse-bead interaction is repeated hundreds of times. Traces with the bead position following the prompt displacement from equilibrium, induced by each laser pulse, are averaged and reveal the underlying deterministic motion of the bead, which is not visible in a single trace due to thermal noise. The motion of the bead is analyzed from the direct time-dependent position measurements and from the power spectrum. The results show that the bead is on average displaced 208 nm from the trap center and exposed to a force amplitude of 71 nanoNewton, more than five orders of magnitude larger than the trapping forces. Our experimental method may have implications for microrheology.

© 2013 OSA

OCIS Codes
(070.4790) Fourier optics and signal processing : Spectrum analysis
(110.4280) Imaging systems : Noise in imaging systems
(140.7010) Lasers and laser optics : Laser trapping
(170.4520) Medical optics and biotechnology : Optical confinement and manipulation
(140.3538) Lasers and laser optics : Lasers, pulsed

ToC Category:
Optical Trapping and Manipulation

Original Manuscript: November 27, 2012
Revised Manuscript: January 4, 2013
Manuscript Accepted: January 7, 2013
Published: January 17, 2013

Virtual Issues
Vol. 8, Iss. 2 Virtual Journal for Biomedical Optics

Thue B. Lindballe, Martin V. G. Kristensen, Kirstine Berg-Sørensen, Søren R. Keiding, and Henrik Stapelfeldt, "Pulsed laser manipulation of an optically trapped bead: Averaging thermal noise and measuring the pulsed force amplitude," Opt. Express 21, 1986-1996 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. M. Simmons, J. T. Finer, S. Chu, and J. A. Spudich, “Quantitative measurements of force and displacement using an optical trap,” Biophys. J.70, 1813–1822 (1996). [CrossRef] [PubMed]
  2. F. Gittes and C. F. Schmidt, “Signals and noise in micromechanical measurements,” Meth. Cell. Biol, 55, 129–156 (1998). [CrossRef]
  3. E.-L. Florin, A. Pralle, E. Stelzer, and J. Hörber, “Photonic force microscope calibration by thermal noise analysis,” Appl. Phys. A Mater. Sci.66, S75–S78 (1998). [CrossRef]
  4. A. Pralle, E.-L. Florin, E. Stelzer, and J. Hörber, “Local viscosity probed by photonic force microscopy,” Appl. Phys. A Mater. Sci.66, S71–S73 (1998). [CrossRef]
  5. K. Berg-Sørensen and H. Flyvbjerg, “Power spectrum analysis for optical tweezers,” Rev. Sci. Instrum.75, 594–612 (2004). [CrossRef]
  6. T. Mason, K. Ganesan, J. van Zanten, D. Wirtz, and S. Kuo, “Particle tracking microrheology of complex fluids,” Phys. Rev. Lett.79, 3282–3285 (1997). [CrossRef]
  7. F. Gittes, B. Schnurr, P. Olmsted, F. MacKintosh, and C. Schmidt, “Microscopic viscoelasticity: Shear moduli of soft materials determined from thermal fluctuations,” Phys. Rev. Lett.79, 3286–3289 (1997). [CrossRef]
  8. T. G. Mason, T. Gisler, K. Kroy, E. Frey, and D. A. Weitz, “Rheology of f-actin solutions determined from thermally driven tracer motion,” J. Rheol.44, 917–928 (2000). [CrossRef]
  9. S. Yamada, D. Wirtz, and S. C. Kuo, “Mechanics of living cells measured by laser tracking microrheology,” Biophys. J.78, 1736–1747 (2000). [CrossRef] [PubMed]
  10. K. D. Wulff, D. G. Cole, and R. L. Clark, “Servo control of an optical trap,” Appl. Opt.46, 4923 (2007). [CrossRef] [PubMed]
  11. A. E. Wallin, H. Ojala, E. Hæggström, and R. Tuma, “Stiffer optical tweezers through real-time feedback control,” Appl. Phys. Lett.92, 224104 (2008). [CrossRef]
  12. D. Preece, R. Bowman, A. Linnenberger, G. Gibson, S. Serati, and M. Padgett, “Increasing trap stiffness with position clamping in holographic optical tweezers,” Opt. Express17, 22718–22725 (2009). [CrossRef]
  13. S. Tauro, A. Bañas, D. Palima, and J. Glückstad, “Dynamic axial stabilization of counter-propagating beam-traps with feedback control,” Opt. Express18, 18217–18222 (2010). [CrossRef] [PubMed]
  14. R. Bowman, A. Jesacher, G. Thalhammer, G. Gibson, M. Ritsch-Marte, and M. Padgett, “Position clamping in a holographic counterpropagating optical trap,” Opt. Express19, 9908–9914 (2011). [CrossRef] [PubMed]
  15. Y. Huang, J. Wan, M.-C. Cheng, Z. Zhang, S. M. Jhiang, and C.-H. Menq, “Three-axis rapid steering of optically propelled micro/nanoparticles,” Rev. Sci. Instrum.80, 063107 (2009). [CrossRef] [PubMed]
  16. Y. Huang, Z. Zhang, and C.-H. Menq, “Minimum-variance Brownian motion control of an optically trapped probe,” Appl. Opt.48, 5871–5880 (2009). [CrossRef] [PubMed]
  17. D. Preece, R. Warren, R. M. L. Evans, G. M. Gibson, M. J. Padgett, J. M. Cooper, and M. Tassieri, “Optical tweezers: wideband microrheology,” J. Opt.13, 044022 (2011). [CrossRef]
  18. F. C. Mackintosh and C. F. Schmidt, “Active cellular materials,” Curr. Opin. Cell Biol.22, 29–35 (2010). [CrossRef] [PubMed]
  19. T. B. Lindballe, M. V. Kristensen, A. P. Kylling, D. Z. Palima, J. Glückstad, S. R. Keiding, and H. Stapelfeldt, “Three-dimensional imaging and force characterization of multiple trapped particles in low NA counterpropagating optical traps,” Journal of J. Eur. Opt. Soc-Rapid6, 11057 (2011). [CrossRef]
  20. H.-U. Ulriksen, J. Thøgersen, S. R. Keiding, I. R. Perch-Nielsen, J. S. Dam, D. Z. Palima, H. Stapelfeldt, and J. Glückstad, “Independent trapping, manipulation and characterization by an all-optical biophotonics workstation,” J. Eur. Opt. Soc-Rapid3, 08034 (2008). [CrossRef]
  21. J. C. Crocker and D. G. Grier, “Methods of digital video microscopy for colloidal studies,” J. Colloid Interface Sci.179, 298–310 (1996). [CrossRef]
  22. S. C. Chapin, V. Germain, and E. R. Dufresne, “Automated trapping, assembly, and sorting with holographic optical tweezers,” Opt. Express14, 13095–13100 (2006). [CrossRef] [PubMed]
  23. S. Keen, A. Yao, J. Leach, R. Di Leonardo, C. Saunter, G. Love, J. Cooper, and M. Padgett, “Multipoint viscosity measurements in microfluidic channels using optical tweezers,” Lab Chip9, 2059 (2009). [CrossRef] [PubMed]
  24. P. S. Alves and M. S. Rocha, “Videomicroscopy calibration of optical tweezers by position autocorrelation function analysis,” Appl. Phys. B107, 375–378 (2012). [CrossRef]
  25. “The experiment was only carried out at one power of the pulsed laser beam. If the power is reduced (increased) we expect a qualitative similar motion of the bead, following the laser pulse, but with a reduced (increased) maximum displacement from equilibrium due to the weaker (stronger) push from the laser pulse. Beyond a certain power the action on the bead will be so strong that it is pushed out of the optical trap.”
  26. T. Li, S. Kheifets, D. Medellin, and M. G. Raizen, “Measurement of the Instantaneous Velocity of a Brownian Particle,” Science328, 1673–1675 (2010). [CrossRef] [PubMed]
  27. F. Czerwinski, A. C. Richardson, and L. B. Oddershede, “Quantifying noise in optical tweezers by allan variance,” Opt. Express17, 13255–13269 (2009). [CrossRef] [PubMed]
  28. S. F. Tolić-Nørrelykke, E. Schäffer, J. Howard, F. S. Pavone, F. Jülicher, and H. Flyvbjerg, “Calibration of optical tweezers with positional detection in the back focal plane,” Rev. Sci. Instrum.77, 103101 (2006). [CrossRef]
  29. F. Harris, “On the use of windows for harmonic analysis with the discrete fourier transform,” Proc. IEEE66, 51–83 (1978). [CrossRef]
  30. J. Wan, Y. Huang, S. Jhiang, and C.-H. Menq, “Real-time in situ calibration of an optically trapped probing system,” Appl. Opt.48, 4832–4841 (2009). [CrossRef] [PubMed]
  31. Y. Huang, P. Cheng, and C.-H. Menq, “Dynamic Force Sensing Using an Optically Trapped Probing System,” IEEE ASME Trans. Mechatron.16, 1145–1154 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited